方便好用的分堆算法
本帖最后由 kkq0305 于 2021-11-30 12:31 编辑;利用图元在xy轴方向上的投影进行分堆
;适合投影没有交叉的情况
(defun c:tt ()
(setq ss (ssget))
(setqlst
(mapcar '(lambda (x)
(setq obj (vlax-ename->vla-object x))
(vla-getboundingbox obj 'minp 'maxp)
(setq
maxp (mapcar '* '(1.0 1.0) (vlax-safearray->list maxp))
)
(setq
minp (mapcar '* '(1.0 1.0) (vlax-safearray->list minp))
)
(list x (car minp) (car maxp) (cadr minp) (cadr maxp))
)
(vl-remove-if-not
'(lambda (x) (= 'ENAME (type x)))
(apply 'append (ssnamex ss))
)
)
);获取图元投影信息建立表
;表内元素:图元名 minx maxx miny maxy
(setqflst (lambda (lst key);分堆函数
;lst 对图元投影排序之后的lst
;key t 第一次按照x轴投影分堆 nil 第二次按照y轴投影分堆
(if lst
(if key
(progn
(setq nlst (list (list (caar lst)
(cadddr (car lst))
(last (car lst))
))
maxpx (caddar lst)
lst (cdr lst)
)
(while (and lst (<= (cadar lst) maxpx))
(setq nlst(cons (list (caar lst)
(cadddr (car lst))
(last (car lst))
)
nlst
)
maxpx (max maxpx (caddar lst))
lst (cdr lst)
)
)
(cons nlst (flst lst key))
);第一次按照x轴投影分堆按照x轴投影间隔分表 并去掉表内x信息minx maxx
(progn
(setq nlst (list (caar lst))
maxpy (caddar lst)
lst (cdr lst)
)
(while (and lst (<= (cadar lst) maxpy))
(setq nlst(cons (caar lst) nlst)
maxpy (max maxpy (caddar lst))
lst (cdr lst)
)
)
(cons nlst (flst lst key))
);第二次按照y轴投影分堆 按照y轴投影间隔分表 并去掉表内y信息miny maxy
)
)
)
)
(setq
lst
(apply
'append
(mapcar
'(lambda (wlst)
(flst (vl-sort wlst '(lambda (a b) (< (cadr a) (cadr b))))
nil
)
)
(flst (vl-sort lst '(lambda (a b) (< (cadr a) (cadr b)))) t)
)
)
);分堆完成
(mapcar
'(lambda (x)
(setq pt (apply
'append
(mapcar
'(lambda (ent)
(vla-getboundingbox (vlax-ename->vla-object ent) 'minp 'maxp)
(list (mapcar '* '(1.0 1.0) (vlax-safearray->list maxp))
(mapcar '* '(1.0 1.0) (vlax-safearray->list minp))
)
)
x
)
))
(setq minp (mapcar '- (apply 'mapcar (cons 'min pt)) '(3. 3.)))
(setq maxp (mapcar '+ (apply 'mapcar (cons 'max pt)) '(3. 3.)))
(entmake(list '(0 . "LWPOLYLINE")
'(100 . "AcDbEntity")
'(100 . "AcDbPolyline")
'(90 . 4)
'(70 . 1)
'(62 . 1)
(cons 10 minp)
(cons 10 (list (car minp) (cadr maxp)))
(cons 10 maxp)
(cons 10 (list (car maxp) (cadr minp)))
)
)
)
lst
);按照分堆成果画出红色矩形框 矩形框偏移3个单位
(princ)
)
我增加的一个可以自行输入外扩距离
(defun c:tt (/ wkjl ss lst obj maxp minp flst nlst maxpx maxpy pt )
(IF (NULL *wkjl) (setq *wkjl 30.0))
(setq wkjl (GETREAL (strcat "\n外扩距离<" (rtos *wkjl 2 2) ">:")))
(if (NULL wkjl) (setq wkjl *wkjl) (setq *wkjl wkjl))
(setq ss (ssget))
(setqlst
(mapcar '(lambda (x)
(setq obj (vlax-ename->vla-object x))
(vla-getboundingbox obj 'minp 'maxp)
(setq
maxp (mapcar '* '(1.0 1.0) (vlax-safearray->list maxp))
)
(setq
minp (mapcar '* '(1.0 1.0) (vlax-safearray->list minp))
)
(list x (car minp) (car maxp) (cadr minp) (cadr maxp))
)
(vl-remove-if-not
'(lambda (x) (= 'ENAME (type x)))
(apply 'append (ssnamex ss))
)
)
)
(setqflst (lambda (lst key)
(if lst
(if key
(progn
(setq nlst (list (list (caar lst)
(cadddr (car lst))
(last (car lst))
))
maxpx (caddar lst)
lst (cdr lst)
)
(while (and lst (<= (cadar lst) maxpx))
(setq nlst(cons (list (caar lst)
(cadddr (car lst))
(last (car lst))
)
nlst
)
maxpx (max maxpx (caddar lst))
lst (cdr lst)
)
)
(cons nlst (flst lst key))
)
(progn
(setq nlst (list (caar lst))
maxpy (caddar lst)
lst (cdr lst)
)
(while (and lst (<= (cadar lst) maxpy))
(setq nlst(cons (caar lst) nlst)
maxpy (max maxpy (caddar lst))
lst (cdr lst)
)
)
(cons nlst (flst lst key))
)
)
)
)
)
(setq
lst
(apply
'append
(mapcar
'(lambda (wlst)
(flst (vl-sort wlst '(lambda (a b) (< (cadr a) (cadr b))))
nil
)
)
(flst (vl-sort lst '(lambda (a b) (< (cadr a) (cadr b)))) t)
)
)
)
(mapcar
'(lambda (x)
(setq pt (apply
'append
(mapcar
'(lambda (ent)
(vla-getboundingbox (vlax-ename->vla-object ent) 'minp 'maxp)
(list (mapcar '* '(1.0 1.0) (vlax-safearray->list maxp))
(mapcar '* '(1.0 1.0) (vlax-safearray->list minp))
)
)
x
)
))
(setq minp (mapcar '- (apply 'mapcar (cons 'min pt)) (list wkjl wkjl)))
(setq maxp (mapcar '+ (apply 'mapcar (cons 'max pt)) (list wkjl wkjl)))
(entmake(list '(0 . "LWPOLYLINE")
'(100 . "AcDbEntity")
'(100 . "AcDbPolyline")
'(90 . 4)
'(70 . 1)
'(62 . 1)
(cons 10 minp)
(cons 10 (list (car minp) (cadr maxp)))
(cons 10 maxp)
(cons 10 (list (car maxp) (cadr minp)))
)
)
)
lst
)
(princ)
) 本帖最后由 guosheyang 于 2021-11-30 00:09 编辑
我先前也写过个类似代码估计框内图元多了的话 会运行慢 在这儿http://bbs.mjtd.com/thread-184261-1-1.html attach://116886.gif

(defun c:tet ()
(defun juxingguolv (ss / ent i j lst1 lst2 maxpoint minpoint nam name1 name2 pmax pmin pt1x pt1y pt2x pt2y pt3x pt3y pt4x pt4y ) ; 过滤掉矩形选择集内的矩形子函数 nam
(setq lst1 '())
(repeat (setq i (sslength ss))
(setq nam (ssname ss (setq i (1- i))))
(vla-getboundingbox (vlax-ename->vla-object nam) 'minpoint 'maxpoint)
(setq pmax (vlax-safearray->list maxpoint)pmin (vlax-safearray->list minpoint))
(setq lst1 (cons (list pmin pmax nam) lst1))
)
(setq lst2 lst1)
(repeat (setq i (length lst1))
(setq nam (nth (setq i (1- i)) lst1))
(setq pt1x (car (car nam))pt1y (cadr (car nam))pt2x (car (cadr nam))
pt2y (cadr (cadr nam))name1 (caddr nam) )
(repeat (setq j (length lst2))
(setq ent (nth (setq j (1- j))lst2 ))
(setq pt3x (car (car ent))pt3y (cadr (car ent)) pt4x (car (cadr ent))
pt4y (cadr (cadr ent)) name2 (caddr ent))
(if (and (> pt3x pt1x) (> pt3y pt1y)(< pt4x pt2x) (< pt4y pt2y))
(if (ssmemb name2 ss)(setq ss (ssdel name2 ss))))
(if (and (< pt3x pt1x) (< pt3y pt1y) (> pt4x pt2x)(> pt4y pt2y))
(if (ssmemb name1 ss) (setq ss (ssdel name1 ss))))))
ss
)
(setvar "cmdecho" 0) ;指令执行过程不响应
(setq ss (ssget (list'(0 . "LWPOLYLINE,CIRCLE"))))
(progn
(setq ss (juxingguolv ss))
(sssetfirst nil ss)
(command "_.chprop" SS "" "c" "1" "")
)) attach://116885.gif 这种情况下会出错麻烦看看
guosheyang 发表于 2021-11-30 00:02
attach://116885.gif 这种情况下会出错麻烦看看
这个 是相对齐整你这个应该 二次分堆 就分出来 了
guosheyang 发表于 2021-11-30 00:07
我先前也写过个类似代码估计框内图元多了的话 会运行慢 在这儿http://bbs.mjtd.com/thread-184261-1- ...
不适合 xy方向投影上有有交叉的没有间隔的分堆 kkq0305 发表于 2021-11-30 10:44
不适合 xy方向投影上有有交叉的没有间隔的分堆
好的 谢谢! 可以返回;((选择集((点表)(点表)(点表)(点表))) (选择集((点表)(点表)(点表)(点表))))这样吗 请教大家,上面的代码是哪一行修改矩形框的图层的?