沙漠骆驼工具箱源码-1文本相关-文本对齐
工具条:文本对齐,界面和代码如下:1 界面:
http://
2代码如下:
''''每个click事件的后面都注释了当前按钮的名称
Private Sub CommandButton1_Click() '表格文字中对齐
On Error Resume Next
'quxiao '调用取消命令
ThisDrawing.SetVariable "cmdecho", 0
ThisDrawing.SetVariable "HPBOUND", 1
Dim filtertype(0 To 3) As Integer '定义选择过滤器类型的dsf组码
Dim filterdata(0 To 3) As Variant '定义过滤器的值
filtertype(0) = -4
filterdata(0) = "<or"
filtertype(1) = 0
filterdata(1) = "text"
filtertype(2) = 0
filterdata(2) = "mtext"
filtertype(3) = -4
filterdata(3) = "or>"
Dim sset1 As AcadSelectionSet'文字选择集
Set sset1 = ThisDrawing.SelectionSets.Add("ss1")
If Err.Number <> 0 Then
Err.Clear
Set sset1 = ThisDrawing.SelectionSets.Item("ss1")
sset1.Clear
End If
ThisDrawing.Utility.prompt ("-----请框选要表格居中的文本-----")
sset1.SelectOnScreen filtertype, filterdata
If sset1.count = 0 Then Exit Sub
Dim textobj As AcadEntity
Dim p1 As Variant
Dim p2 As Variant
Dim pz(0 To 2) As Double
Dim textmiddlepoint(0 To 2) As Double
Dim text1 As AcadText '定义单行文本
Dim text2 As AcadMText'定义多行文本
Dim plineobj As AcadLWPolyline
Dim boundary1 As Variant
Dim boundary2 As Variant '文字边框
Dim move1(0 To 2) As Double '定义单行文本中点
For Each textobj In sset1
If textobj.ObjectName = "AcDbText" Then
Set text1 = textobj
pz(0) = text1.InsertionPoint(0)
pz(1) = text1.InsertionPoint(1)
Else
Set text2 = textobj
pz(0) = text2.InsertionPoint(0)
pz(1) = text2.InsertionPoint(1)
End If
Dim countnow As Integer'此处设定一个变量,用于记录当前图形个数,
'如果创建不成功,则图形个数不变,执行下一个next
countnow = ThisDrawing.ModelSpace.count
textobj.Visible = False '避免产生文字框多段线
ThisDrawing.SendCommand "(command ""-boundary""" & "(list " & pz(0) & " " & pz(1) & ")"""") "
'ThisDrawing.SendCommand "-boundary" & "(list " & pz(0) & " " & pz(1) & ")" & vbCr
textobj.Visible = True
If ThisDrawing.ModelSpace.count = countnow Then GoTo nexti
Set plineobj = ThisDrawing.ModelSpace.Item(ThisDrawing.ModelSpace.count - 1)
plineobj.GetBoundingBox p1, p2
plineobj.Delete '删除多段线
textmiddlepoint(0) = (p1(0) + p2(0)) / 2 '表格中心x点
textmiddlepoint(1) = (p1(1) + p2(1)) / 2 '表格中心y点
If textobj.ObjectName = "AcDbText" Then
text1.GetBoundingBox boundary1, boundary2
move1(0) = (boundary1(0) + boundary2(0)) / 2
move1(1) = (boundary1(1) + boundary2(1)) / 2
text1.Move move1, textmiddlepoint
Else
text2.AttachmentPoint = 5'正中对齐
text2.Move text2.InsertionPoint, textmiddlepoint '移动到矩形中点
End If
nexti:
Next
sset1.Clear
sset1.Delete
End Sub
Private Sub CommandButton2_Click() '左对齐
Me.Hide
ThisDrawing.SetVariable "cmdecho", 0
ThisDrawing.SetVariable "HPBOUND", 1
Dim filtertype(0 To 3) As Integer '定义选择过滤器类型的dsf组码
Dim filterdata(0 To 3) As Variant '定义过滤器的值
filtertype(0) = -4
filterdata(0) = "<or"
filtertype(1) = 0
filterdata(1) = "text"
filtertype(2) = 0
filterdata(2) = "mtext"
filtertype(3) = -4
filterdata(3) = "or>"
On Error Resume Next
Dim sset1 As AcadSelectionSet'文字选择集
Set sset1 = ThisDrawing.SelectionSets.Add("ss1")
If Err.Number <> 0 Then
Err.Clear
Set sset1 = ThisDrawing.SelectionSets.Item("ss1")
sset1.Clear
End If
ThisDrawing.Utility.prompt ("-----请框选要左对齐的文本-----")
sset1.SelectOnScreen filtertype, filterdata
If sset1.count = 0 Then
Me.show
sset1.Delete
Exit Sub
End If
Dim pointleft As Variant
pointleft = ThisDrawing.Utility.GetPoint(, vbCrLf & "请点取左对齐边界:")
If Err Then
Me.show
Exit Sub
End If
Dim textobj As AcadEntity
Dim p1(0 To 2) As Double
p1(0) = pointleft(0) '设置x坐标为固定值
'Dim move1(0 To 2)As Double
Dim move2(0 To 2)As Double
Dim boundary1 As Variant
Dim boundary2 As Variant
Dim text1 As AcadText '定义单行文本
Dim text2 As AcadMText'定义多行文本
For Each textobj In sset1
If textobj.ObjectName = "AcDbMText" Then
Set text2 = textobj
Select Case text2.AttachmentPoint
Case 1, 2, 3
text2.AttachmentPoint = 1
Case 4, 5, 6
text2.AttachmentPoint = 4
Case 7, 8, 9
text2.AttachmentPoint = 7
End Select
p1(1) = text2.InsertionPoint(1) '设置y坐标 insertionpoint 就是attachmentpoint 位置的坐标
text2.InsertionPoint = p1
Else
Set text1 = textobj
text1.GetBoundingBox boundary1, boundary2
move2(0) = p1(0): move2(1) = boundary1(1)
text1.Move boundary1, move2
End If
Next
sset1.Clear
sset1.Delete
Me.show
End Sub
Private Sub CommandButton3_Click() '中对齐
ThisDrawing.SetVariable "cmdecho", 0
ThisDrawing.SetVariable "HPBOUND", 1
Dim filtertype(0 To 3) As Integer '定义选择过滤器类型的dsf组码
Dim filterdata(0 To 3) As Variant '定义过滤器的值
filtertype(0) = -4
filterdata(0) = "<or"
filtertype(1) = 0
filterdata(1) = "text"
filtertype(2) = 0
filterdata(2) = "mtext"
filtertype(3) = -4
filterdata(3) = "or>"
On Error Resume Next
Dim sset1 As AcadSelectionSet'文字选择集
Set sset1 = ThisDrawing.SelectionSets.Add("ss1")
If Err.Number <> 0 Then
Err.Clear
Set sset1 = ThisDrawing.SelectionSets.Item("ss1")
sset1.Clear
End If
ThisDrawing.Utility.prompt ("-----请框选要中对齐的文本-----")
sset1.SelectOnScreen filtertype, filterdata
Dim pointleft As Variant
pointleft = ThisDrawing.Utility.GetPoint(, vbCrLf & "请点取中对齐边界:")
If sset1.count = 0 Or Err.Number <> 0 Then Exit Sub
Dim textobj As AcadEntity
Dim p1(0 To 2) As Double
p1(0) = pointleft(0) '设置x坐标为固定值
'Dim move1(0 To 2)As Double
Dim move2(0 To 2)As Double
Dim boundary1 As Variant
Dim boundary2 As Variant
Dim text1 As AcadText '定义单行文本
Dim text2 As AcadMText'定义多行文本
For Each textobj In sset1
If textobj.ObjectName = "AcDbMText" Then
Set text2 = textobj
Select Case text2.AttachmentPoint
Case 1, 2, 3
text2.AttachmentPoint = 2
Case 4, 5, 6
text2.AttachmentPoint = 5
Case 7, 8, 9
text2.AttachmentPoint = 8
End Select
p1(1) = text2.InsertionPoint(1) '设置y坐标
text2.InsertionPoint = p1
Else
Set text1 = textobj
text1.GetBoundingBox boundary1, boundary2
move2(0) = p1(0) - 0.5 * (boundary2(0) - boundary1(0)): move2(1) = boundary1(1)
text1.Move boundary1, move2
End If
Next
sset1.Clear
sset1.Delete
End Sub
Private Sub CommandButton4_Click()'右对齐
ThisDrawing.SetVariable "cmdecho", 0
ThisDrawing.SetVariable "HPBOUND", 1
Dim filtertype(0 To 3) As Integer '定义选择过滤器类型的dsf组码
Dim filterdata(0 To 3) As Variant '定义过滤器的值
filtertype(0) = -4
filterdata(0) = "<or"
filtertype(1) = 0
filterdata(1) = "text"
filtertype(2) = 0
filterdata(2) = "mtext"
filtertype(3) = -4
filterdata(3) = "or>"
On Error Resume Next
Dim sset1 As AcadSelectionSet'文字选择集
Set sset1 = ThisDrawing.SelectionSets.Add("ss1")
If Err.Number <> 0 Then
Err.Clear
Set sset1 = ThisDrawing.SelectionSets.Item("ss1")
sset1.Clear
End If
ThisDrawing.Utility.prompt ("-----请框选要右对齐的文本-----")
sset1.SelectOnScreen filtertype, filterdata
Dim pointleft As Variant
pointleft = ThisDrawing.Utility.GetPoint(, vbCrLf & "请点取右对齐边界:")
If sset1.count = 0 Or Err.Number <> 0 Then Exit Sub
Dim textobj As AcadEntity
Dim p1(0 To 2) As Double
p1(0) = pointleft(0) '设置x坐标为固定值
Dim text1 As AcadText '定义单行文本
Dim text2 As AcadMText'定义多行文本
Dim move2(0 To 2)As Double
Dim boundary1 As Variant
Dim boundary2 As Variant
For Each textobj In sset1
If textobj.ObjectName = "AcDbMText" Then
Set text2 = textobj
Select Case text2.AttachmentPoint
Case 1, 2, 3
text2.AttachmentPoint = 3
Case 4, 5, 6
text2.AttachmentPoint = 6
Case 7, 8, 9
text2.AttachmentPoint = 9
End Select
p1(1) = text2.InsertionPoint(1) '设置y坐标
text2.InsertionPoint = p1
Else
Set text1 = textobj
text1.GetBoundingBox boundary1, boundary2
move2(0) = p1(0) - boundary2(0) + boundary1(0): move2(1) = boundary1(1)
text1.Move boundary1, move2
End If
Next
sset1.Clear
sset1.Delete
End Sub
Private Sub CommandButton5_Click() '底端对齐
ThisDrawing.SetVariable "cmdecho", 0
ThisDrawing.SetVariable "HPBOUND", 1
Dim filtertype(0 To 3) As Integer '定义选择过滤器类型的dsf组码
Dim filterdata(0 To 3) As Variant '定义过滤器的值
filtertype(0) = -4
filterdata(0) = "<or"
filtertype(1) = 0
filterdata(1) = "text"
filtertype(2) = 0
filterdata(2) = "mtext"
filtertype(3) = -4
filterdata(3) = "or>"
On Error Resume Next
Dim sset1 As AcadSelectionSet'文字选择集
Set sset1 = ThisDrawing.SelectionSets.Add("ss1")
If Err.Number <> 0 Then
Err.Clear
Set sset1 = ThisDrawing.SelectionSets.Item("ss1")
sset1.Clear
End If
ThisDrawing.Utility.prompt ("-----请框选要底端对齐的文本-----")
sset1.SelectOnScreen filtertype, filterdata
Dim pointleft As Variant
pointleft = ThisDrawing.Utility.GetPoint(, vbCrLf & "请点取底端对齐边界:")
If sset1.count = 0 Or Err.Number <> 0 Then Exit Sub
Dim textobj As AcadEntity
Dim p1(0 To 2) As Double
p1(1) = pointleft(1) '设置y坐标为固定值
'Dim move1(0 To 2)As Double
Dim move2(0 To 2)As Double
Dim boundary1 As Variant
Dim boundary2 As Variant
Dim text1 As AcadText '定义单行文本
Dim text2 As AcadMText'定义多行文本
For Each textobj In sset1
If textobj.ObjectName = "AcDbMText" Then
Set text2 = textobj
Select Case text2.AttachmentPoint
Case 1, 4, 7
text2.AttachmentPoint = 7
Case 2, 5, 8
text2.AttachmentPoint = 8
Case 3, 6, 9
text2.AttachmentPoint = 9
End Select
p1(0) = text2.InsertionPoint(0) '设置x坐标 insertionpoint 就是attachmentpoint 位置的坐标
text2.InsertionPoint = p1
Else
Set text1 = textobj
text1.GetBoundingBox boundary1, boundary2
move2(0) = boundary1(0): move2(1) = p1(1)
text1.Move boundary1, move2
End If
Next
sset1.Clear
sset1.Delete
End Sub
Private Sub CommandButton6_Click() '顶端对齐
ThisDrawing.SetVariable "cmdecho", 0
ThisDrawing.SetVariable "HPBOUND", 1
Dim filtertype(0 To 3) As Integer '定义选择过滤器类型的dsf组码
Dim filterdata(0 To 3) As Variant '定义过滤器的值
filtertype(0) = -4
filterdata(0) = "<or"
filtertype(1) = 0
filterdata(1) = "text"
filtertype(2) = 0
filterdata(2) = "mtext"
filtertype(3) = -4
filterdata(3) = "or>"
On Error Resume Next
Dim sset1 As AcadSelectionSet'文字选择集
Set sset1 = ThisDrawing.SelectionSets.Add("ss1")
If Err.Number <> 0 Then
Err.Clear
Set sset1 = ThisDrawing.SelectionSets.Item("ss1")
sset1.Clear
End If
ThisDrawing.Utility.prompt ("-----请框选要顶端对齐的文本-----")
sset1.SelectOnScreen filtertype, filterdata
Dim pointleft As Variant
pointleft = ThisDrawing.Utility.GetPoint(, vbCrLf & "请点取顶端对齐边界:")
If sset1.count = 0 Or Err.Number <> 0 Then Exit Sub
Dim textobj As AcadEntity
Dim p1(0 To 2) As Double
p1(1) = pointleft(1) '设置y坐标为固定值
'Dim move1(0 To 2)As Double
Dim move2(0 To 2)As Double
Dim boundary1 As Variant
Dim boundary2 As Variant
Dim text1 As AcadText '定义单行文本
Dim text2 As AcadMText'定义多行文本
For Each textobj In sset1
If textobj.ObjectName = "AcDbMText" Then
Set text2 = textobj
Select Case text2.AttachmentPoint
Case 1, 4, 7
text2.AttachmentPoint = 1
Case 2, 5, 8
text2.AttachmentPoint = 2
Case 3, 6, 9
text2.AttachmentPoint = 3
End Select
p1(0) = text2.InsertionPoint(0) '设置x坐标 insertionpoint 就是attachmentpoint 位置的坐标
text2.InsertionPoint = p1
Else
Set text1 = textobj
text1.GetBoundingBox boundary1, boundary2
move2(0) = boundary2(0): move2(1) = p1(1)
text1.Move boundary2, move2
End If
Next
sset1.Clear
sset1.Delete
End Sub
Private Sub CommandButton7_Click() '水平中对齐
ThisDrawing.SetVariable "cmdecho", 0
ThisDrawing.SetVariable "HPBOUND", 1
Dim filtertype(0 To 3) As Integer '定义选择过滤器类型的dsf组码
Dim filterdata(0 To 3) As Variant '定义过滤器的值
filtertype(0) = -4
filterdata(0) = "<or"
filtertype(1) = 0
filterdata(1) = "text"
filtertype(2) = 0
filterdata(2) = "mtext"
filtertype(3) = -4
filterdata(3) = "or>"
On Error Resume Next
Dim sset1 As AcadSelectionSet'文字选择集
Set sset1 = ThisDrawing.SelectionSets.Add("ss1")
If Err.Number <> 0 Then
Err.Clear
Set sset1 = ThisDrawing.SelectionSets.Item("ss1")
sset1.Clear
End If
ThisDrawing.Utility.prompt ("-----请框选要水平中对齐的文本-----")
sset1.SelectOnScreen filtertype, filterdata
Dim pointleft As Variant
pointleft = ThisDrawing.Utility.GetPoint(, vbCrLf & "请点取对齐边界:")
If sset1.count = 0 Or Err.Number <> 0 Then Exit Sub
Dim textobj As AcadEntity
Dim p1(0 To 2) As Double
p1(1) = pointleft(1) '设置y坐标为固定值
'Dim move1(0 To 2)As Double
Dim move2(0 To 2)As Double
Dim boundary1 As Variant
Dim boundary2 As Variant
Dim text1 As AcadText '定义单行文本
Dim text2 As AcadMText'定义多行文本
For Each textobj In sset1
If textobj.ObjectName = "AcDbMText" Then
Set text2 = textobj
Select Case text2.AttachmentPoint
Case 1, 4, 7
text2.AttachmentPoint = 4
Case 2, 5, 8
text2.AttachmentPoint = 5
Case 3, 6, 9
text2.AttachmentPoint = 6
End Select
p1(0) = text2.InsertionPoint(0) '设置x坐标 insertionpoint 就是attachmentpoint 位置的坐标
text2.InsertionPoint = p1
Else
Set text1 = textobj
text1.GetBoundingBox boundary1, boundary2
move2(0) = boundary1(0): move2(1) = p1(1) - 0.5 * (boundary2(1) - boundary1(1))
text1.Move boundary1, move2
End If
Next
sset1.Clear
sset1.Delete
End Sub
页:
[1]