meetang 发表于 2023-5-26 09:24:23

根据两点直线画一个外偏矩形框

根据输入的两个点AB,自动绘制一pline矩形框,方向和AB点连成直线平行,矩形框厚度要求200,长度为直线AB+2*50。画完后从矩形框中心引出一条线再加一个输入文本框。,要求用lisp语言编写,40个币不清楚对应多少钱了,可商量。

xtjd 发表于 2023-5-26 09:24:24

(defun c:test(/ an d1 d2 os p1 p2 p3 p4 p5 p6 p7 )
        (setvar "cmdecho" 0)
        (defun ptmid(a b)(mapcar '(lambda(x y)(/(+ x y)2.0))a b))
        (setq os(getvar "osmode"))
        (if(and(setq p1(getpoint "\n请指定起始点:"))(setq p2(getpoint p1 "请指定第二点:"))(>(setq d1(distance p1 p2))0))
                (progn
                        (setvar "osmode" 0)
                        (setq        d2(+ d1 100)an(angle p1 p2)p3(polar p2 an d2)p4(polar p3(+(* pi 1.5)an)200)p5(polar p4(angle p2 p1)d2))
                        (command ".pline" p2 p3 p4 p5 "c")
                        (if(setq p7(getpoint(setq p6(ptmid p2 p4)) "\n请指定线段终点"))
                                (command ".leader" p6 p7 "" "" "" "")
                        )
                )
        )
        (setvar "osmode" os)
        (prin1)
)

meetang 发表于 2023-5-26 09:28:53

原本只有9个币,充值过了,再加100币

ssyfeng 发表于 2023-5-26 11:03:25

可以加QQ:269126750详聊,有些地方你可能说的不太清楚。

start4444 发表于 2023-5-26 11:28:47

(defun c:tt5 (/ ang l p1 p2 p3 p4 p5 p6 pt_per)
(setq p1 (getpoint"\n选择点A:") p2 (getpoint p1"\n选择点B:") p3 (getpoint "\n选择方向点:") L(+ (distance p1 p2) 100))       
(setq ang (angle p1 p2) p4 (polar p3 (+ ang (* 0.5 pi)) 1) pt_per (inters p1 p2 p3 p4 nil) ang (angle pt_per p3))       
(setq p5 (polar p1 ang L) p6 (polar p2 ang L))
(command "pline" "non" p1 "non" p2 "non" p6 "non" p5 "c" "")       
(command"PEDIT" (entlast) "w" 200 "")
(command "LEADER" "non" (mapcar'*(mapcar'+ p1 p6)'(0.5 0.5 0.5)) pause)
(princ)               
)

meetang 发表于 2023-5-26 16:03:32

xtjd 发表于 2023-5-26 11:56
(defun c:test(/ an d1 d2 os p1 p2 p3 p4 p5 p6 p7 )
        (setvar "cmdecho" 0)
        (defun ptmid(a b)(mapcar ...

大致能实现,就是矩形框位置有偏,加个微信zhouhq-6791吧,还要调整一下

meetang 发表于 2023-5-26 16:04:36

start4444 发表于 2023-5-26 11:28
(defun c:tt5 (/ ang l p1 p2 p3 p4 p5 p6 pt_per)
(setq p1 (getpoint"\n选择点A:") p2 (getpoint p1"\n ...

测试了感觉实现功能稍差
页: [1]
查看完整版本: 根据两点直线画一个外偏矩形框