【自我挑战103】
<P>求a值:</P> <P>R9.38700867</P><P> </P> 何方高手?请说明作法供大伙儿学习。 <p>不好意思,没有能马上给出纯几何作图法,得等一段时间复习反演变换,先用MAPLE算算凑凑数:)</p><p></p><p></p> 本帖最后由 作者 于 2006-12-31 12:45:05 编辑 <br /><br /> <p align="justify">QJchen 高啊!</p><p align="justify">解释一下反演变换:</p><p align="justify">[<font lang="ZH-CN" face="宋体_GB2312">反演</font>] <font lang="ZH-CN" face="宋体_GB2312">设</font>C<font lang="ZH-CN" face="宋体_GB2312">为一定圆,</font>O<font lang="ZH-CN" face="宋体_GB2312">为圆心,</font>r<font lang="ZH-CN" face="宋体_GB2312">为半径</font>(<font lang="ZH-CN" face="宋体_GB2312">图</font>7.1)<font lang="ZH-CN" face="宋体_GB2312">,对平面上任一点</font><font face="Times New Roman, Times, serif">M</font><font lang="ZH-CN" face="宋体_GB2312"></font><font lang="ZH-CN" face="宋体_GB2312">,有一点</font><font face="Times New Roman, Times, serif">M</font><font lang="ZH-CN" face="宋体_GB2312"></font><font face="Symbol">¢</font><font lang="ZH-CN" face="宋体_GB2312">与它对应</font>.<font lang="ZH-CN" face="宋体_GB2312">使得满足下列两个条件:</font></p><p align="justify"><font lang="ZH-CN" face="宋体_GB2312">(</font>i<font lang="ZH-CN" face="宋体_GB2312">)</font>O, <font face="Times New Roman, Times, serif">M</font><font lang="ZH-CN" face="宋体_GB2312"></font>, <font face="Times New Roman, Times, serif">M</font><font lang="ZH-CN" face="宋体_GB2312"></font><font face="Symbol">¢</font><font lang="ZH-CN" face="宋体_GB2312">共线,</font><font lang="ZH-CN" face="宋体_GB2312">(</font>ii<font lang="ZH-CN" face="宋体_GB2312">)</font>O<font face="Times New Roman, Times, serif">M</font><font lang="ZH-CN" face="宋体_GB2312"></font><font face="Symbol">×</font> O<font face="Times New Roman, Times, serif">M</font><font lang="ZH-CN" face="宋体_GB2312"></font><font face="Symbol">¢</font> <font lang="ZH-CN" face="宋体_GB2312">= </font>r<sup>2</sup><font lang="ZH-CN" face="宋体_GB2312">,</font></p><p align="justify"><font lang="ZH-CN" face="宋体_GB2312">这种点</font><font face="Times New Roman, Times, serif">M</font><font lang="ZH-CN" face="宋体_GB2312"></font><font face="Symbol">¢</font> <font lang="ZH-CN" face="宋体_GB2312">称为点</font><font face="Times New Roman, Times, serif">M</font><font lang="ZH-CN" face="宋体_GB2312"></font><font lang="ZH-CN" face="宋体_GB2312">关于定圆</font>C<font lang="ZH-CN" face="宋体_GB2312">的反演点,</font>C<font lang="ZH-CN" face="宋体_GB2312">称为反演圆,</font>O<font lang="ZH-CN" face="宋体_GB2312">称为反演中心,</font>r<font lang="ZH-CN" face="宋体_GB2312">称为反演半径</font>.</p><p align="justify"><font lang="ZH-CN" face="宋体_GB2312">由于</font><font face="Times New Roman, Times, serif">M</font><font lang="ZH-CN" face="宋体_GB2312"></font><font lang="ZH-CN" face="宋体_GB2312">和</font><font face="Times New Roman, Times, serif">M</font><font lang="ZH-CN" face="宋体_GB2312"></font><font face="Symbol">¢</font> <font lang="ZH-CN" face="宋体_GB2312">的关系是对称的,所以</font><font face="Times New Roman, Times, serif">M</font><font lang="ZH-CN" face="宋体_GB2312"></font><font lang="ZH-CN" face="宋体_GB2312">也是</font><font face="Times New Roman, Times, serif">M</font><font lang="ZH-CN" face="宋体_GB2312"></font><font face="Symbol">¢ </font><font lang="ZH-CN" face="宋体_GB2312">的反演点.因</font>r<sup>2 </sup>> 0<font lang="ZH-CN" face="宋体_GB2312">,所以</font><font face="Times New Roman, Times, serif">M</font><font lang="ZH-CN" face="宋体_GB2312"></font><font lang="ZH-CN" face="宋体_GB2312">和</font><font face="Times New Roman, Times, serif">M</font><font lang="ZH-CN" face="宋体_GB2312"></font><font face="Symbol">¢</font> <font lang="ZH-CN" face="宋体_GB2312">都在</font>O<font lang="ZH-CN" face="宋体_GB2312">的同侧</font>.<font face="Times New Roman, Times, serif">M</font><font lang="ZH-CN" face="宋体_GB2312"></font><font lang="ZH-CN" face="宋体_GB2312">和</font><font face="Times New Roman, Times, serif">M</font><font lang="ZH-CN" face="宋体_GB2312"></font><font face="Symbol">¢ </font><font lang="ZH-CN" face="宋体_GB2312">之间的对应称为关于定圆</font>C<font lang="ZH-CN" face="宋体_GB2312">的反演</font>.<font lang="ZH-CN" face="宋体_GB2312">取</font>O<font lang="ZH-CN" face="宋体_GB2312">为原点,则一切反演点</font><font face="Times New Roman, Times, serif">M</font><font face="Times New Roman, Times, serif">(x, y)</font><font lang="ZH-CN" face="宋体_GB2312">和</font><font face="Times New Roman, Times, serif">M</font><font lang="ZH-CN" face="宋体_GB2312"></font><font face="Symbol">¢</font>(x<font face="Symbol">¢</font> <font lang="ZH-CN" face="宋体_GB2312">,</font>y<font face="Symbol">¢</font><font lang="ZH-CN" face="宋体_GB2312">)的对应方程为</font></p><p align="center"><font lang="ZH-CN" face="宋体_GB2312"></font></p><font lang="ZH-CN" face="宋体_GB2312"><p align="justify">反演具有性质:</p><p align="justify"><img height="140" alt="" hspace="12" src="file:///C:/Program%20Files/Math2000/doc/G51/Image196.gif" width="143" align="right"/><br/> </p></font><p align="justify"> </p><p align="justify"> </p><p align="justify"> </p><p align="justify"> </p><p align="justify"> </p><p align="justify">1<font face="Symbol">°</font><font lang="ZH-CN" face="宋体_GB2312">不通过反演中心的一条直线变为通过反演中心的一个圆</font>.</p><p align="justify">2<font face="Symbol">°</font><font lang="ZH-CN" face="宋体_GB2312">通过反演中心的圆变为不通过反演中心的直线</font>.</p><p align="justify">3<font face="Symbol">°</font> <font lang="ZH-CN" face="宋体_GB2312">通过反演中心的一条直线变为它自己</font>.</p><p align="justify">4<font face="Symbol">°</font><font lang="ZH-CN" face="宋体_GB2312">不通过反演中心的圆变为不通过反演中心的圆</font>.</p><p align="justify">5<font face="Symbol">°</font> <font lang="ZH-CN" face="宋体_GB2312">反演圆变为它自己</font>.</p><p align="justify">6<font face="Symbol">°</font><font lang="ZH-CN" face="宋体_GB2312">与反演圆正交的圆变为它自己,其逆也真</font>.</p><p align="justify">7<font face="Symbol">°</font><font lang="ZH-CN" face="宋体_GB2312">如果两条曲线</font><i>C<sub>1</sub><font lang="ZH-CN" face="宋体_GB2312">,</font>C<sub>2</sub><font lang="ZH-CN" face="宋体_GB2312">交于一点</font><font face="Times New Roman, Times, serif">M</font><font lang="ZH-CN" face="宋体_GB2312"></font><font lang="ZH-CN" face="宋体_GB2312">,则经过反演后的曲线</font>C<sub>1<font face="Symbol">¢</font> </sub>, C<sub>2<font face="Symbol">¢</font></sub><font lang="ZH-CN" face="宋体_GB2312">必交于</font><font face="Times New Roman, Times, serif">M</font><font lang="ZH-CN" face="宋体_GB2312">的反演点</font><font face="Times New Roman, Times, serif">M</font><font lang="ZH-CN" face="宋体_GB2312"></font><font face="Symbol">¢</font>.</p><p align="justify">8<font face="Symbol">°</font><font lang="ZH-CN" face="宋体_GB2312">如果两条曲线</font>C<sub>1</sub>, C<sub>2</sub><font lang="ZH-CN" face="宋体_GB2312">在一点</font><font face="Times New Roman, Times, serif">M</font><font lang="ZH-CN" face="宋体_GB2312"></font><font lang="ZH-CN" face="宋体_GB2312">相切,则经过反演后的曲线</font>C<sub>1<font face="Symbol">¢</font></sub>, C<sub>2<font face="Symbol">¢</font> </sub><font lang="ZH-CN" face="宋体_GB2312">必在</font><font face="Times New Roman, Times, serif">M</font><font lang="ZH-CN" face="宋体_GB2312"></font><font lang="ZH-CN" face="宋体_GB2312">的反演点</font><font face="Times New Roman, Times, serif">M</font><font lang="ZH-CN" face="宋体_GB2312"></font><font face="Symbol">¢</font><font lang="ZH-CN" face="宋体_GB2312">相切</font>.</p><p align="justify">9<font face="Symbol">°</font> <font lang="ZH-CN" face="宋体_GB2312">两条曲线的交角在反演下是不变的</font>.<font lang="ZH-CN" face="宋体_GB2312">由此可见,反演是一个保角变换</font>.</p> 这个题其实可以尝试找出与R30R50相切的圆圆心的轨迹,这个轨迹与R40的圆的交点即是我们要求的圆的圆心。
页:
[1]