空间坐标转换
本帖最后由 作者 于 2007-5-16 9:05:47 编辑 <br /><br /> <p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"><b style="mso-bidi-font-weight: normal;">空间坐标转换</b></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"><b style="mso-bidi-font-weight: normal;"> </b>编写图形处理程序时,常常要进行坐标转换。坐标转换实际上是坐标矢量的转换。所谓坐标矢量就是把坐标系的原点设为起点,<span style="COLOR: fuchsia;">坐标点设为终点的矢量。坐标系有很多种,而我们常常是在直角坐标系中工作,所以在以下的讨论中,坐标系均指直角坐标系。</span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"><span style="mso-spacerun: yes;"> </span>设有<span lang="EN-US">2个直角坐标系,分别命名为</span>UCS和WCS,如下图。以下讨论这<span lang="EN-US">2个坐标系间的坐标转换关系。</span> </p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"><font face="Times New Roman">1. </font>空间坐标转换的基本方法:</p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"><font face="Times New Roman">UCS</font>中的坐标<b style="mso-bidi-font-weight: normal;"><font face="Times New Roman">x' </font></b>和<font face="Times New Roman">WCS</font>中的坐标<b style="mso-bidi-font-weight: normal;"><font face="Times New Roman">x</font></b>分别设为<font face="Times New Roman">,</font></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"><font face="Times New Roman"><b style="mso-bidi-font-weight: normal;"><span style="mso-tab-count: 1;"> x'</span></b>=(x', y', z')<sup>T</sup><b style="mso-bidi-font-weight: normal;"> </b>, <span style="mso-spacerun: yes;"> <b style="mso-bidi-font-weight: normal;">x</b>=(x, y, z)<sup>T</sup></span></font></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"><font face="Times New Roman">UCS</font>中的单位坐标轴矢量<font face="Times New Roman"><b style="mso-bidi-font-weight: normal;">e</b><sup>x</sup>, <b style="mso-bidi-font-weight: normal;">e</b><sup>y</sup><b style="mso-bidi-font-weight: normal;">, e</b><sup>z</sup></font>和原点<font face="Times New Roman"><b style="mso-bidi-font-weight: normal;">O</b>' </font>均由<font face="Times New Roman">WCS</font>的成分如下表示</p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"><font face="Times New Roman"><b style="mso-bidi-font-weight: normal;">e</b><sup>x </sup>=(e<sup>x</sup><sub>1 </sub>, e<sup>x</sup><sub>2 </sub>, e<sup>x</sup><sub>3 </sub>)<sup> T</sup> , <b style="mso-bidi-font-weight: normal;">e</b><sup>y </sup>=(e<sup>y</sup><sub>1 </sub>, e<sup>y</sup><sub>2 </sub>, e<sup>y</sup><sub>3 </sub>)<sup> T</sup> , <b style="mso-bidi-font-weight: normal;">e</b><sup>z </sup>=(e<sup>z</sup><sub>1 </sub>, e<sup>z</sup><sub>2 </sub>, e<sup>z</sup><sub>3 </sub>)<sup> T</sup> , <b style="mso-bidi-font-weight: normal;">O</b>' = <b style="mso-bidi-font-weight: normal;">u </b>= (x<sub>0 </sub>, y<sub>0 </sub>, z<sub>0 </sub>)<sup> T</sup></font></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;">其中,<font face="Times New Roman">WCS</font>为一标准的直角坐标系,即<font face="Times New Roman">x,y,z</font>轴的单位坐标轴矢量和原点分别是,</p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"><font face="Times New Roman">(1, 0, 0)<sup> T</sup>, (0, 1, 0)<sup> T</sup>, (0, 0, 1)<sup> T</sup></font>和<font face="Times New Roman"> (0, 0, 0)<sup> T</sup></font>。</p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;">在以下矢量和矩阵的演算中<font face="Times New Roman">, </font>均采用指标的形式进行。</p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"><font face="Times New Roman">1) WCS</font>中的坐标转换成<font face="Times New Roman">UCS</font>中的坐标</p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"> 当把<font face="Times New Roman">WCS</font>中的坐标转换成<font face="Times New Roman">UCS</font>中的坐标时,可以通过如下公式进行计算,</p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"> <font face="Times New Roman">x'<sub>i </sub>= </font>a<font face="Times New Roman"><sub>ij</sub> </font><font face="Times New Roman">(x<sub>j</sub> - u<sub>j</sub>) =<b style="mso-bidi-font-weight: normal;"> </b></font>a<font face="Times New Roman"><sub>ij</sub> x<sub>j</sub> - </font>a<font face="Times New Roman"><sub>ij</sub> u<sub>j</sub><b style="mso-bidi-font-weight: normal;"><br/></b></font>在以上的计算中,假定坐标系<font face="Times New Roman">WCS</font>先平移<b style="mso-bidi-font-weight: normal;"><font face="Times New Roman">u</font></b>,再旋转后变成<font face="Times New Roman">UCS</font>。</p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;">又设平移成分为</p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"><font face="Times New Roman"><span style="mso-tab-count: 1;"> M<sub>i</sub> =</font></span> a<font face="Times New Roman"><sub>ij</sub> u<sub>j</sub></font></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;">则有<font face="Times New Roman">,</font></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"><font face="Times New Roman"><span style="mso-tab-count: 1;"> x'<sub>i </sub>= </font></span>a<font face="Times New Roman"><sub>ij</sub> x<sub>j</sub> - M<sub>i</sub></font></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"><font face="Times New Roman"></font>式中,</p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;">为仅有旋转的坐标转换矩阵,即坐标旋转转换矩阵。由上式可以知道,当<font face="Times New Roman">WCS</font>为一标准的直角坐标系时,<font face="Times New Roman">UCS</font>的单位坐标轴矢量和坐标旋转转换矩阵<b style="mso-bidi-font-weight: normal;">a</b>有着等价关系。</p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"><font face="Times New Roman">2) </font>坐标转换时,为方便计算常常采用<span lang="EN-US">4次元坐标。这时,</span><font face="Times New Roman">WCS</font>的坐标和<font face="Times New Roman">UCS</font>的坐标分别表示为,</p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"><span style="mso-tab-count: 1;"> </span><font face="Times New Roman"><b style="mso-bidi-font-weight: normal;">x </b>= (x, y, z, 1)<sup>T</sup>, <span style="mso-spacerun: yes;"> <b style="mso-bidi-font-weight: normal;">x' </b>= (x', y', z', 1)<sup>T</sup></span></font></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"><font face="Times New Roman"></font>此时<span lang="EN-US">,坐标转换矩阵定义为</span><b style="mso-bidi-font-weight: normal;">H</b>,<b style="mso-bidi-font-weight: normal;">H</b>的成分如下:</p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;">利用<b style="mso-bidi-font-weight: normal;"><font face="Times New Roman">H</font></b>,把<font face="Times New Roman">WCS</font>的坐标转换成<font face="Times New Roman">UCS</font>的坐标时,如下运算<font face="Times New Roman">:</font></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"><font face="Times New Roman"></font><span style="mso-tab-count: 1;"> </span><font face="Times New Roman">x'<sub>i </sub>= H<sub>ij</sub> x<sub>j</sub></font></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"><font face="Times New Roman">3) UCS</font>中的坐标转换成<font face="Times New Roman">WCS</font>中的坐标</p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"><span style="mso-spacerun: yes;"><font face="Times New Roman"> </font></span>这是上述变换的逆运算,即</p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"><font face="Times New Roman"><span style="mso-tab-count: 1;"> x<sub>i </sub>= </font></span>a<sup>-1</sup><font face="Times New Roman"><sub>ij</sub> (x'<sub>j</sub> - u'<sub>i</sub><b style="mso-bidi-font-weight: normal;"> </b>)</font></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;">整理后<font face="Times New Roman">,</font></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"><font face="Times New Roman"><span style="mso-tab-count: 1;"> x<sub>i </sub>= </font></span>a<font face="Times New Roman"><sub>ji</sub> x</font><font face="Times New Roman">'<sub>j</sub> + u<sub>i</sub></font></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"><font face="Times New Roman"></font>在上式的计算中,假定坐标系<font face="Times New Roman">UCS</font>先平移<font face="Times New Roman"><b style="mso-bidi-font-weight: normal;">u</b><b style="mso-bidi-font-weight: normal;">'</b></font>,再旋转后变成<font face="Times New Roman">WCS</font>。</p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;">当用<span lang="EN-US">4次元坐标时,坐标转换矩阵定义为</span><b style="mso-bidi-font-weight: normal;">H </b>的逆矩阵<b style="mso-bidi-font-weight: normal;">H</b><sup>-1</sup>如下:</p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;">利用<font face="Times New Roman"><b style="mso-bidi-font-weight: normal;">H</b><sup>-1</sup></font>可由下式把<font face="Times New Roman">UCS</font>的坐标<font face="Times New Roman">(x', y', z')<sup> T</sup></font>转换成<font face="Times New Roman">WCS(x, y, z)<sup> T</sup></font>的坐标,</p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"><font face="Times New Roman"><b style="mso-bidi-font-weight: normal;"><span style="mso-tab-count: 1;"> </span></b>x<sub>i </sub>= H<sup>-1</sup><sub>ij</sub> x'<sub>j</sub></font></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;">另外<font face="Times New Roman">, </font>在<font face="Times New Roman">ACAD VBA</font>中<font face="Times New Roman">, </font>通过<font face="Times New Roman">GetUCSMatrix() </font>方法获得的坐标转换矩阵即为<font face="Times New Roman"><b style="mso-bidi-font-weight: normal;">H</b><sup>-1</sup></font></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"><font face="Times New Roman">4) <b style="mso-bidi-font-weight: normal;">H</b></font>と<font face="Times New Roman"><b style="mso-bidi-font-weight: normal;">H</b><sup>-1</sup> (inverse matrix)</font>的关系</p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;">为表示简洁<font face="Times New Roman">, </font>设<font face="Times New Roman"><b style="mso-bidi-font-weight: normal;">G=</b><b style="mso-bidi-font-weight: normal;">H</b><sup>-1</sup></font></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"><b style="mso-bidi-font-weight: normal;"><font face="Times New Roman">H</font></b>和<b style="mso-bidi-font-weight: normal;"><span lang="EN-US">G</b></span>有如下关系<font face="Times New Roman">:</font></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"><font face="Times New Roman"></font><font face="Times New Roman"><b style="mso-bidi-font-weight: normal;"><span style="mso-tab-count: 1;"> (1)</span> </b>i=1,3 ; j=1,3</font></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"><font face="Times New Roman"> </font><font face="Times New Roman"><b style="mso-bidi-font-weight: normal;"><span style="mso-tab-count: 1;"> </span></b>H<sub>ij</sub>= G<sub>ji</sub></font></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"><font face="Times New Roman"></font><font face="Times New Roman"><b style="mso-bidi-font-weight: normal;"><span style="mso-tab-count: 1;"> (2) </span></b>i=1,3 ( j=4) ; k=1,3</font></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"><font face="Times New Roman"><span style="mso-tab-count: 1;"> H<sub>i</sub><sub>4</sub>= - G<sub>ki</sub> G<sub>k</sub><sub>4</sub></font></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"><font face="Times New Roman"><sub> </sub><span style="mso-tab-count: 1;"> G<sub>i</sub></span><sub>4</sub>= - H<sub>ki</sub> H<sub>k</sub><sub>4</sub></font><br/><font face="Times New Roman"> </font><font face="Times New Roman"><b style="mso-bidi-font-weight: normal;"><span style="mso-tab-count: 1;"> (3) </span></b>i=4 ; j=1,4</font></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"><font face="Times New Roman"><span style="mso-tab-count: 1;"> H<sub>ij</sub>= G<sub>ij</sub></font></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"><span style="mso-spacerun: yes;"> </span>由以上运算可以看出,坐标转换计算时,求坐标转换矩阵是关键。以下讨论坐标转换矩阵的计算方法。</p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"></p><p></p><p> <font face="Times New Roman">2.</font> 坐标旋转转换矩阵<b style="mso-bidi-font-weight: normal;">a</b>的计算方法</p><p><span style="mso-spacerun: yes;"><font face="Times New Roman"> </font></span>在讨论绕不同的坐标轴旋转所对应的坐标旋转转换矩阵时<span lang="EN-US">,</span>旋转角度的符号由以下方法确定:当由旋转角按右手法则确定的旋转方向和旋转轴正方向一致时,取正号;相反则取负号。</p><p>1) 设仅绕x轴旋转g 角度的坐标旋转转换矩阵为<b style="mso-bidi-font-weight: normal;">a</b><sup>x</sup>, 仅绕y轴旋转b 角度的坐标旋转转换矩阵为<b style="mso-bidi-font-weight: normal;">a</b><sup>y</sup>, 仅绕z轴旋转q 角度的坐标旋转转换矩阵为<b style="mso-bidi-font-weight: normal;">a</b><sup>z</sup>, 它们的成分分别如下:</p><p></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"><font face="Times New Roman">2) </font>仅有旋转的一般情况:<span style="FONT-FAMILY: 宋体; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">即先绕<font face="Times New Roman">x<sub>1</sub></font>轴旋转q<sub><font face="Times New Roman">1</font></sub>,再绕旋转后的<font face="Times New Roman">x<sub>2</sub></font>轴旋转q<sub><font face="Times New Roman">2</font></sub>,...,再绕前面旋转后的<font face="Times New Roman">x<sub>i</sub></font>轴旋转q<sub><font face="Times New Roman">i</font></sub>,...,最后再绕前面旋转后的<font face="Times New Roman">x<sub>n</sub></font>轴旋转q<sub><font face="Times New Roman">n</font></sub>的坐标旋转转换矩阵可由以下公式算出<font face="Times New Roman">:</font></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"><span lang="EN-US"><font face="Times New Roman"> </font>a<font face="Times New Roman"><sub>ij</sub>= </font>a<font face="Times New Roman"><sup>n</sup><sub>ik</sub></font> a<sup><font face="Times New Roman">n</font></sup><font face="Times New Roman"><sup>-1</sup><sub>kl</sub></font>···a<font face="Times New Roman"><sup>i</sup><sub>pq</sub></font>···a<font face="Times New Roman"><sup>1</sup><sub>mj</sub></font></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"><font face="Times New Roman"><sub><span lang="EN-US"></sub></font></span>由此可知道,最后旋转的坐标旋转转换矩阵在最前,最先旋转的坐标旋转转换矩阵在最后,和实际旋转的顺序相反。</p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;">例如,<span style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 12.0pt; mso-font-kerning: 1.0pt; mso-bidi-font-family: "Times New Roman"; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA;">先绕z轴旋转q ,再绕旋转后的y轴旋转b,最后再绕经过前面2次旋转后的x轴旋转g 的坐标旋转转换矩阵<b style="mso-bidi-font-weight: normal;">a</b></span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"><b style="mso-bidi-font-weight: normal;"><span lang="EN-US" style="FONT-SIZE: 10.5pt; FONT-FAMILY: Symbol; mso-bidi-font-size: 12.0pt; mso-font-kerning: 1.0pt; mso-bidi-font-family: "Times New Roman"; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA; mso-fareast-font-family: 宋体;"></b></span><span style="mso-tab-count: 1;"><font face="Times New Roman"> </font></span>a<font face="Times New Roman"><sub>ij</sub>= </font>a<font face="Times New Roman"><sup>x</sup><sub>ik</sub></font> a<font face="Times New Roman"><sup>y</sup><sub>kl</sub></font> a<font face="Times New Roman"><sup>z</sup><sub>lj</sub></font></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;">由于以上是矩阵的运算,所以坐标旋转转换矩阵<b style="mso-bidi-font-weight: normal;">a</b>与旋转的顺序有关。</p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"></p><p></p><p><font face="Times New Roman">3.</font> 同时有旋转和平移的坐标转换矩阵的计算方法</p><p><font face="Times New Roman"><span style="mso-spacerun: yes;"> </font></span>一般的坐标转换,可能同时有旋转和平移的情况,这时把坐标旋转转换矩阵<b style="mso-bidi-font-weight: normal;">a</b>改为由上述定义的<b style="mso-bidi-font-weight: normal;"><font face="Times New Roman">H</font></b>,其余的和仅有旋转的一般情况一样运算,最后即可求出<font face="Times New Roman">4</font>次元的坐标转换矩阵<b style="mso-bidi-font-weight: normal;"><font face="Times New Roman">H</font></b>。</p><p>由以上的结果,可以得出<span style="COLOR: fuchsia;">一般情况的</span>坐标转换。<span style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 12.0pt; mso-font-kerning: 1.0pt; mso-bidi-font-family: "Times New Roman"; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">即先进行坐标转换<span lang="EN-US">1</span>,<br/> 再在第一次转换的基础上进行坐标转换<span lang="EN-US">2</span>,...,再在第i-1次转换的基础上进行坐标转换i,...,最后在第n-1次转换的基础上进行坐标转换n的坐标转换矩阵<b style="mso-bidi-font-weight: normal;">H</b>可由以下公式算出</span></p><p><span style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 12.0pt; mso-font-kerning: 1.0pt; mso-bidi-font-family: "Times New Roman"; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";"> </span><font face="Times New Roman">H<sub>ij</sub>= H<sup>n</sup><sub>ik</sub></font> <font face="Times New Roman">H<sup>n</sup></font><font face="Times New Roman"><sup>-1</sup><sub>kl</sub></font>···<font face="Times New Roman">H<sup>i</sup><sub>pq</sub></font>···<font face="Times New Roman">H<sup>1</sup><sub>mj</sub></font></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt; tab-stops: 21.0pt right 378.0pt;"><font face="Times New Roman"><sub></sub></font>最后进行的坐标转换矩阵在最前,最先进行的坐标转换矩阵在最后,和实际坐标转换的顺序相反。由于以上的矩阵运算知,<span style="COLOR: fuchsia;">坐标转换矩阵</span><b style="mso-bidi-font-weight: normal;">H</b>与<span style="COLOR: blue;">旋转以及平移的顺序都有关。</span></p> 好帖子,我对这个题目做了一定的工作,希望与楼主就具体内容进行切磋. <p>只要算法清楚了,程序就可以实现啦!呵呵!</p> 在CAD中TranslateCoordinates 应用更简单,收藏这个帖子. VBA本身就提供了矩阵转换的函数
页:
[1]