兰州人 发表于 2008-9-11 21:29:00

x,y绕x0,y0任意角度算法

<p>要求:</p><p>&nbsp; 中心点为x0,y0.求x,y绕x0,y0旋转任意角度的坐标</p><p>&nbsp;&nbsp;方程</p><p>&nbsp;&nbsp;设旋转角度为A,(x,y)变换之后的坐标为(x',y'),那么: <br/>&nbsp; x'=(x-x0)*cosA-(y-y0)*sinA+x0 <br/>&nbsp; y'=(x-x0)*sinA+(y-y0)*cosA+y0 </p><p>程序</p><p>&nbsp; <br/>Sub ls()<br/>&nbsp; Dim P0(0 To 2) As Double, pp(0 To 2) As Double<br/>&nbsp; P0(0) = 0: P0(1) = 0<br/>&nbsp; x = 10: y = 0<br/>&nbsp; Alfa = 30 * Pi / 180<br/>&nbsp; pp(0) = (x - P0(0)) * Cos(Alfa) - (y - P0(1)) * Sin(Alfa) + P0(0)<br/>&nbsp; pp(1) = (x - P0(0)) * Sin(Alfa) + (y - P0(1)) * Cos(Alfa) + P0(1)<br/>&nbsp; Dim objLine As AcadLine<br/>&nbsp; Set objLine = ThisDrawing.ModelSpace.AddLine(pp, P0)</p><p>End Sub<br/>Function Pi()<br/>&nbsp; Pi = 4 * Atn(1)<br/>End Function<br/></p><p>&nbsp;<br/></p>

兰州人 发表于 2008-9-12 10:26:00

本帖最后由 作者 于 2008-9-16 20:45:50 编辑 <br /><br /> <p>带功能函数</p><p>Type ReturnPoint<br/>&nbsp; X As Double<br/>&nbsp; Y As Double<br/>&nbsp; Z As Double<br/>End Type</p><p>Sub lss()<br/>&nbsp; Dim p2(0 To 2) As Double, p1(0 To 2) As Double<br/>&nbsp; Dim objLine As AcadLine</p><p>&nbsp; Dim pXY As Variant, P0 As Variant<br/>&nbsp; Dim pp As ReturnPoint<br/>&nbsp; pXY = Array(2, 2, 0)<br/>&nbsp; P0 = Array(0, 0, 0)<br/>&nbsp; <br/>&nbsp; pp = RotatingAroundTheZAxis(P0, pXY, 30)<br/>&nbsp; For ii = 0 To 2<br/>&nbsp;&nbsp;&nbsp; p1(ii) = P0(ii)<br/>&nbsp; Next ii<br/>&nbsp; p2(0) = pp.X: p2(1) = pp.Y: p2(2) = pp.Z<br/>&nbsp; Set objLine = ThisDrawing.ModelSpace.AddLine(p1, p2)<br/>''<br/>&nbsp; pYZ = Array(0, 2, 2)<br/>&nbsp; P0 = Array(0, 0, 0)<br/>&nbsp; <br/>&nbsp; pp = RotatingAroundTheXAxis(P0, pYZ, 30)<br/>&nbsp; For ii = 0 To 2<br/>&nbsp;&nbsp;&nbsp; p1(ii) = P0(ii)<br/>&nbsp; Next ii<br/>&nbsp; p2(0) = pp.X: p2(1) = pp.Y: p2(2) = pp.Z<br/>&nbsp; Set objLine = ThisDrawing.ModelSpace.AddLine(p1, p2)<br/>''<br/>&nbsp; pYZ = Array(2, 0, 2)<br/>&nbsp; P0 = Array(0, 0, 0)<br/>&nbsp; <br/>&nbsp; pp = RotatingAroundTheYAxis(P0, pYZ, 30)<br/>&nbsp; For ii = 0 To 2<br/>&nbsp;&nbsp;&nbsp; p1(ii) = P0(ii)<br/>&nbsp; Next ii<br/>&nbsp; p2(0) = pp.X: p2(1) = pp.Y: p2(2) = pp.Z<br/>&nbsp; Set objLine = ThisDrawing.ModelSpace.AddLine(p1, p2)</p><p>End Sub</p><p>Function RotatingAroundTheXAxis(P0 As Variant, pXY As Variant, Gama As Double) As ReturnPoint<br/>&nbsp; zz = pXY(2): yy = pXY(1)<br/>&nbsp; z0 = P0(2): y0 = P0(1)<br/>&nbsp; Gama = Gama * Pi / 180<br/>&nbsp; With RotatingAroundTheXAxis<br/>&nbsp;&nbsp;&nbsp; .X = pXY(0)<br/>&nbsp;&nbsp;&nbsp; .Y = (yy - y0) * Cos(Gama) - (zz - z0) * Sin(Gama) + y0<br/>&nbsp;&nbsp;&nbsp; .Z = (yy - y0) * Sin(Gama) + (zz - z0) * Cos(Gama) + z0<br/>&nbsp; End With<br/>End Function</p><p>Function RotatingAroundTheYAxis(P0 As Variant, pXY As Variant, Belta As Double) As ReturnPoint<br/>&nbsp; xx = pXY(0): zz = pXY(2)<br/>&nbsp; x0 = P0(0): z0 = P0(2)<br/>&nbsp; Belta = Belta * Pi / 180<br/>&nbsp; With RotatingAroundTheYAxis<br/>&nbsp; <br/>&nbsp;&nbsp;&nbsp; .X = (xx - x0) * Cos(Belta) - (zz - z0) * Sin(Belta) + x0<br/>&nbsp;&nbsp;&nbsp; .Y = pXY(1)<br/>&nbsp;&nbsp;&nbsp; .Z = (xx - x0) * Sin(Belta) + (zz - z0) * Cos(Belta) + z0<br/>&nbsp;&nbsp;&nbsp; <br/>&nbsp; End With<br/>End Function</p><p>Function RotatingAroundTheZAxis(P0 As Variant, pXY As Variant, Alfa As Double) As ReturnPoint<br/>&nbsp; xx = pXY(0): yy = pXY(1)<br/>&nbsp; x0 = P0(0): y0 = P0(1)<br/>&nbsp; Alfa = Alfa * Pi / 180<br/>&nbsp; With RotatingAroundTheZAxis<br/>&nbsp;&nbsp;&nbsp; .X = (xx - x0) * Cos(Alfa) - (yy - y0) * Sin(Alfa) + x0<br/>&nbsp;&nbsp;&nbsp; .Y = (xx - x0) * Sin(Alfa) + (yy - y0) * Cos(Alfa) + y0<br/>&nbsp;&nbsp;&nbsp; .Z = pXY(2)<br/>&nbsp; End With<br/>End Function</p><p><br/>Function Pi()<br/>&nbsp; Pi = 4 * Atn(1)<br/>End Function</p><p><br/></p><p></p>
页: [1]
查看完整版本: x,y绕x0,y0任意角度算法