x,y绕x0,y0任意角度算法
<p>要求:</p><p> 中心点为x0,y0.求x,y绕x0,y0旋转任意角度的坐标</p><p> 方程</p><p> 设旋转角度为A,(x,y)变换之后的坐标为(x',y'),那么: <br/> x'=(x-x0)*cosA-(y-y0)*sinA+x0 <br/> y'=(x-x0)*sinA+(y-y0)*cosA+y0 </p><p>程序</p><p> <br/>Sub ls()<br/> Dim P0(0 To 2) As Double, pp(0 To 2) As Double<br/> P0(0) = 0: P0(1) = 0<br/> x = 10: y = 0<br/> Alfa = 30 * Pi / 180<br/> pp(0) = (x - P0(0)) * Cos(Alfa) - (y - P0(1)) * Sin(Alfa) + P0(0)<br/> pp(1) = (x - P0(0)) * Sin(Alfa) + (y - P0(1)) * Cos(Alfa) + P0(1)<br/> Dim objLine As AcadLine<br/> Set objLine = ThisDrawing.ModelSpace.AddLine(pp, P0)</p><p>End Sub<br/>Function Pi()<br/> Pi = 4 * Atn(1)<br/>End Function<br/></p><p> <br/></p> 本帖最后由 作者 于 2008-9-16 20:45:50 编辑 <br /><br /> <p>带功能函数</p><p>Type ReturnPoint<br/> X As Double<br/> Y As Double<br/> Z As Double<br/>End Type</p><p>Sub lss()<br/> Dim p2(0 To 2) As Double, p1(0 To 2) As Double<br/> Dim objLine As AcadLine</p><p> Dim pXY As Variant, P0 As Variant<br/> Dim pp As ReturnPoint<br/> pXY = Array(2, 2, 0)<br/> P0 = Array(0, 0, 0)<br/> <br/> pp = RotatingAroundTheZAxis(P0, pXY, 30)<br/> For ii = 0 To 2<br/> p1(ii) = P0(ii)<br/> Next ii<br/> p2(0) = pp.X: p2(1) = pp.Y: p2(2) = pp.Z<br/> Set objLine = ThisDrawing.ModelSpace.AddLine(p1, p2)<br/>''<br/> pYZ = Array(0, 2, 2)<br/> P0 = Array(0, 0, 0)<br/> <br/> pp = RotatingAroundTheXAxis(P0, pYZ, 30)<br/> For ii = 0 To 2<br/> p1(ii) = P0(ii)<br/> Next ii<br/> p2(0) = pp.X: p2(1) = pp.Y: p2(2) = pp.Z<br/> Set objLine = ThisDrawing.ModelSpace.AddLine(p1, p2)<br/>''<br/> pYZ = Array(2, 0, 2)<br/> P0 = Array(0, 0, 0)<br/> <br/> pp = RotatingAroundTheYAxis(P0, pYZ, 30)<br/> For ii = 0 To 2<br/> p1(ii) = P0(ii)<br/> Next ii<br/> p2(0) = pp.X: p2(1) = pp.Y: p2(2) = pp.Z<br/> Set objLine = ThisDrawing.ModelSpace.AddLine(p1, p2)</p><p>End Sub</p><p>Function RotatingAroundTheXAxis(P0 As Variant, pXY As Variant, Gama As Double) As ReturnPoint<br/> zz = pXY(2): yy = pXY(1)<br/> z0 = P0(2): y0 = P0(1)<br/> Gama = Gama * Pi / 180<br/> With RotatingAroundTheXAxis<br/> .X = pXY(0)<br/> .Y = (yy - y0) * Cos(Gama) - (zz - z0) * Sin(Gama) + y0<br/> .Z = (yy - y0) * Sin(Gama) + (zz - z0) * Cos(Gama) + z0<br/> End With<br/>End Function</p><p>Function RotatingAroundTheYAxis(P0 As Variant, pXY As Variant, Belta As Double) As ReturnPoint<br/> xx = pXY(0): zz = pXY(2)<br/> x0 = P0(0): z0 = P0(2)<br/> Belta = Belta * Pi / 180<br/> With RotatingAroundTheYAxis<br/> <br/> .X = (xx - x0) * Cos(Belta) - (zz - z0) * Sin(Belta) + x0<br/> .Y = pXY(1)<br/> .Z = (xx - x0) * Sin(Belta) + (zz - z0) * Cos(Belta) + z0<br/> <br/> End With<br/>End Function</p><p>Function RotatingAroundTheZAxis(P0 As Variant, pXY As Variant, Alfa As Double) As ReturnPoint<br/> xx = pXY(0): yy = pXY(1)<br/> x0 = P0(0): y0 = P0(1)<br/> Alfa = Alfa * Pi / 180<br/> With RotatingAroundTheZAxis<br/> .X = (xx - x0) * Cos(Alfa) - (yy - y0) * Sin(Alfa) + x0<br/> .Y = (xx - x0) * Sin(Alfa) + (yy - y0) * Cos(Alfa) + y0<br/> .Z = pXY(2)<br/> End With<br/>End Function</p><p><br/>Function Pi()<br/> Pi = 4 * Atn(1)<br/>End Function</p><p><br/></p><p></p>
页:
[1]