兰州人 发表于 2008-9-15 08:36:00

三维图形几何变换

本帖最后由 作者 于 2008-9-15 15:56:43 编辑 <br /><br /> <p>附件</p><p><a href="http://ftp.mjtd.com/download/ebook/base/三维图形几何变换.rar">三维图形几何变换.rar</a></p><p></p><p><a href="http://202.114.88.54/new/cadm/ja3-3.htm">http://202.114.88.54/new/cadm/ja3-3.htm</a></p><p class="MsoNormal" style="TEXT-INDENT: 21pt; LINE-HEIGHT: 16pt; mso-line-height-rule: exactly; mso-char-indent-count: 2.0;"><span style="FONT-FAMILY: 宋体; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman';">根据复合变换的原理,过原点任意轴<span style="POSITION: relative; TOP: 3pt; mso-text-raise: -3.0pt;">
                                        <shape id="_x0000_i1086" coordsize="21600,21600" type="#_x0000_t75" oole="" style="WIDTH: 18.75pt; HEIGHT: 17.25pt;"></imagedata></shape></span>旋转<i style="mso-bidi-font-style: normal;">θ角的三维旋转变换矩阵为:</p><p class="MsoNormal" align="right" style="WORD-BREAK: break-all; TEXT-INDENT: 21pt; TEXT-ALIGN: right; mso-outline-level: 1; mso-char-indent-count: 2.0;"><span style="POSITION: relative; TOP: 7pt; mso-text-raise: -7.0pt;"><shape id="_x0000_i1087" coordsize="21600,21600" type="#_x0000_t75" oole="" style="WIDTH: 106.5pt; HEIGHT: 18.75pt;"><imagedata src="ja3-3.files/image101.wmz" otitle=""></imagedata></shape>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span>(3-65)</p><p class="MsoNormal" style="TEXT-INDENT: 21pt; mso-char-indent-count: 2.0;">将上述基本变换矩阵代入式(3-65),得到复合变换矩阵:</p><p class="MsoNormal" align="right" style="TEXT-INDENT: 21pt; TEXT-ALIGN: right; mso-outline-level: 1; mso-char-indent-count: 2.0;"></p></span>
页: [1]
查看完整版本: 三维图形几何变换