watt5151 发表于 2008-10-15 11:33:00

[求作]老题:等边垂足三角形

chenjun_nj 发表于 2008-10-15 22:43:00

在△的任两条边上以相邻的边的距离比作阿波罗尼圆,交点就是所求的P点。<br/>原理:垂足△定理,垂足△的边长=P点到原△对应顶点的距离*原△对边的距离/原△外接圆直径。

watt5151 发表于 2008-10-16 09:39:00

chenjun_nj发表于2008-10-15 22:43:00static/image/common/back.gif在△的任两条边上以相邻的边的距离比作阿波罗尼圆,交点就是所求的P点。原理:垂足△定理,垂足△的边长=P点到原△对应顶点的距离*原△对边的距离/原△外接圆直径。

<p><font face="仿宋_GB2312"><font size="5"><strong><em>chenjun_nj的作法可以理解,‘</em></strong>阿波罗尼圆’是可选的方法之一。</font></font></p><p><font face="仿宋_GB2312" color="#dd2248" size="6">方法之二:</font></p><p><font face="仿宋_GB2312" size="5">作∠BPC=60°+∠A<br/>作∠APC=60°+∠B<br/>此P点即为所求。</font></p><p>&nbsp;</p><p><font face="仿宋_GB2312"><font size="5"><font color="#c43c57" size="6">证明(请自画辅助线):<br/></font>设P点到BC、AC、AB垂线之足分别是D、E、F<br/>①∵P、D、C、E共于以PC为直径的园<br/>&nbsp; ∴∠DEP=∠DCP<br/>&nbsp; ∵P、F、A、E共于以PA为直径的园<br/>&nbsp; ∴∠FEP=∠FAP<br/>②∠DEF=∠DEP+∠FEP<br/>&nbsp; =∠DCP+∠FAP&nbsp;&nbsp; <br/>&nbsp; =∠C - ∠ACP+∠A - ∠CAP<br/>&nbsp; =∠A+∠C - (180° - ∠APC)<br/>&nbsp; =∠A+∠C - <br/>&nbsp; =60°<br/>同理:<br/>∠DFE=60°<br/>∠EDF=60°<br/>所以,△DEF是等边三角形。</font></font></p>
页: [1]
查看完整版本: [求作]老题:等边垂足三角形