一直线和三点作等角
<p>已知直线m及其一侧三点A、B、C,在m上作一点D,使∠ADB=∠CDB。</p> 已确定该问题一般无尺规解的<br/>例如$A(-3,-5)$,$B(-1,-5)$,$C(2,-4)$,直线为$y=-5/2$,直线上一点$P$满足$/_APB=/_CPB$时,过点$A$、$P$、$B$的圆弧与$AB$中垂线交点为$Q$,直线$AQ$的斜率$k$满足方程$-1-27x-153x^2-166x^3+153x^4-27x^5+x^6=0$,这个方程的根不能用尺规作图法作出。 此题涉及立方问题(楼主的方程完全可规化为三次的),特殊点位应当还是有解的吧? 当然,例如点A、B、C在同一直线上时就可以用尺轨作图法作图了。 <p><strong><font face="Verdana" color="#61b713">To bbcacbh</font></strong></p><p>您的轨迹法挺好的,不过应该是近似解吧,比如在下图的情况,切线交点的轨迹可能是一条曲线</p><p> </p> 来顶……………………
页:
[1]