xuy_2000 发表于 2003-7-14 10:41:00

re:对CAD技术的看法-陈伯雄(2)

朋友向我推荐了陈老师的一篇文章,看过之后我心中许多疑团都豁然开朗。

我搜索了本论坛,竟然没有此文章,现我贴出来,希望对向我一样对cad技术迷

茫的人有所帮助。

陈伯雄   2002-12-13

                3.从三维开始设计是必然趋势

                3.1三维设计还二维设计
               
            人在设计零件时的原始冲动是三维的,是有颜色、材料、硬度、形状、尺寸、位置、相关零件、制造工艺等等关联概念的三维实体,甚至是带有相当复杂的运动关系的三维实体。只是由于以前的手段有限,人们不得不共同约定了在第一象限(美国是第三象限)平行正投影的二维视图表达规则,用有限个相关联的二维投影图表达自己的三维设想。这种表达信息是极不完整的,而且绘图、读图要经过专门训练人进行,以便“纠正”人类头脑中原始的、关于几何形体表达的“错误”。如果能直接以三维概念开始设计,在现有的软件支持下,这个模型至少有可能表达出设计构思的全部几何参数,整个设计过程可以完全在三维模型上讨论,对设计的辅助就很容易迅速扩大的全过程,设计的全部流程都能使用统一的数据,这是发达国家CAD的今天,也是我们明天的微机CAD。从三维开始的设计,二维工程图的表达仍然要遵守传统设计的要求,因为加工、装配现场还不可能安装计算机系统。这样,支持软件必须有从三维生成二维工作图,并双向关联的能力;为了能在设计中配凑和修改尺寸形状,支持软件又必须有三维实体全面尺寸约束和特征修改能力。这样才有可能建立充分而完整的设计数据库,并以此为基础,进一步进行应力应变分析、制件质量属性分析、空间运动分析、装配干涉分析、NC控制可加工性分析、高正确率的二维工程图生成、外观色彩和造型效果评价、商业广告造型与动画生成等一系列的需求都能充分满足,这才是对设计全过程的有效的辅助,这才是有明确技术效益和经济效益的CAD。如果做到了这一点,传统的以二维工作图为主的设计资料管理将变成三维设计数据的保存和管理,而工科大学的机械制图课就可以大幅度删砍,尽量保留学生的三维原始概念,二维工程图的画法也应随之大幅度简化。在我国,近期内实现波音777那样的全数字化设计还不可能,但是在机械系统实施从三维概念开始的、基于微机的CAD是条件具备的,可以指望解决传统设计中前文所列的难点。这样作肯定会明显提高设计的质量,随之而来的是提高设计的速度。

                3.2只有三维设计才是真正意义上、创成设计的CAD
               
            许多二维参数化软件商告诉我,有了二维参数化,你可以随心所欲地修改零件的形状和尺寸,完成设计更新,这多么好啊。可我从来不敢相信这样的观点。修改零件的尺寸是很容易的,问题是我怎么敢改。要敢改,起码必须进行力学分析,否则这个连杆断了怎么办?我们这些学工的人,都完整地学了理力和材力,经过了三、五年的设计工作后,你的这些知识还剩多少?不经常使用的知识就会忘记,不经常使用的原因不是不需要,而是太麻烦:作一根轴的弯扭组合校核还算凑合,你把发动机缸盖分析一下试试。设计质量提不高,许多问题出在这个分析上。看到国外的设计小巧轻薄,而我们的同类设计傻大黑粗,刚度反而不好,原因谁都会说:材料没有用到关键的地方。哪里是最需要材料的关键部位?找不到这个部位,设计仍然是傻大黑粗。可见,应力应变分析在CAD中是极其重要的内容。只有三维设计,才有可能组建进行有限元分析的原始数据,进而进行零件几何形状的优化设计。否则就是传统的设计方法:进行多次的台架试验甚至样机考核试验,成本之高、周期之长,是现代市场经济无法容忍的。机会对每个设计师都是公平的,在需求确定之后,谁先设计出来、谁先制造成功,谁就会有市场,有经济效益。常有这样的情况,按国外造型的一次性打火机,我们再制造一个,注塑完成后,一眼就看出来不一样。为什么?你的注塑模具没有放出足够的局部收缩量。在这个问题上,传统的二维设计毫无办法。在装配状态下讨论零件设计,使每个工程师都有的梦想。二维设计只能在局部上勉强做到,而三维设计必然能实现这个梦想。

                3.3能直接进入三维设计吗
               
            有一个类似的讨论,我们现在的电子类专业大学教学,是半导体原理讲起,之后是二极管、三极管、单管放大、复合放大、小规模集成电路…这样的顺序讲硬件。然后从二进制、各种进制的转换、机器指令、到一般程序设计…这样的顺序讲软件。这里强调的是个“体系”。于是,学生在校期间很难接触到最新的软件技术,要想接触最新技术,目前可能要在学校学十年,将来技术进一步发展,十五年也不一定毕业。因为“体系”太庞大了,要不怎么叫知识爆炸呢。实际上,计算机应用技术完全没有必要从二进制学起。一个完全不知道怎样将十进制数转换成二进制的人,照样能用好计算机。因为计算机应用的目的就是“将我们已知如何做的事情自动化”,而十进制转换成二进制,是早就已知如何做了的,早就自动化了的,用户已经不必知道和介入这个过程了。如果计算机不能越来越多地接过人类已经确认的工作过程,实现自动化,就不会有越来越多的计算机系统投入使用。因此,计算机软件应用特色是:利用软件提供的功能,根据你的题目要求,完成想做的事情。至于软件内部究竟是怎样完成的,没有必要去操心。只要你真的明确自己要做什么(实际上这也不容易)。在软件应用上来说,软件能力有多强,你的应用结果就有多好,完全不必象在大学那样,从二进制学起。可见,跳过二维工程绘图软件应用阶段,直接从三维设计开始,完全没有问题。当然,在三维建模中要用到的二维图线生成技术,还是必须掌握的。对于一个成熟的设计师来说,进入三维设计最大的障碍不是软件应用技术,而是自己的思考方法。由于多年来习惯于二维工程图表达,习惯于读图中一系列规则的使用,对于描述三维模型上各个特征的类型和相互关系,从思考方法上已经生疏。在这一方面,甚至不如一个新毕业的大学的生接受能力。把自己的思维模式“返朴归真”,是一个必须经历的过程。恢复人类本能的三维模型描述,并不算困难,如果在一个有经验的教师引导下,会很快达到要求。

                4.全参数化驱动三维模型的必要与可能

                4.1只有能用参数驱动的设计模型,才有意义
               
            设计模型的建立,就是设计数据库的数据填充过程。建立数据库的目的,是在将来的设计配凑过程中引用和修改其中的数据,最后完成设计。因此不能进行参数驱动的三维模型,在设计中没有多少用途。仅是做到“看”起来象的建模方法,是没有使用价值的。这里所说的参数驱动,包括对于新设计的零件、引用的标准件,也包括对各个零件之间的装配关系、位置关系甚至运动关系。

                4.2参数驱动的设计模型的可能性
               
            设计模型可以分为两大类。一种我称之为“雕塑模型”,例如人脸。另一种我称之为“几何模型”,这就是各种机械零件的实际特点。无论多么复杂的几何模型,都可以分解成有限品种的构成特征,而每一种构成特征,都可以用有限的参数完全约束,这就是参数化的基本概念。对于机械设计来说,几何模型占我们设计对象的绝大部分。这样,我们的设计,几乎全部都可能用参数化的三维模型表达。Autodesk的MDT和Inventor都是这类软件的典型。MDT是一种典型的参数化建模软件,其参数化约束的技术特点与工程师的想法仍然有些区别,这种区别恐怕是永远存在的,因为软件的思路永远落后于人类的思路。
                模型的参数约束分为两大类:
                1〉几何约束。例如:相互平行、相互同心、两线等长…这样的约束是确定它们的几何关系,而这种几何关系在未来的设计中是保持不变的。
               
            2〉尺寸约束。例如:长度、高度、锥角、半径…这样的约束是确定它们的尺寸大小和相对距离,在将来的设计中,这些尺寸可能改变,也可能被另外的零件引用。MDT又一种典型的特征建模软件。
                其特征模型分为三大类:
               
            1〉基于轮廓的特征:先有被参数化约束的二维轮廓,之后按要求和软件的可能生成三维模型特征。例如:拉伸、回转、放样…这样的特征也可以通过布尔运算组合在同一模型中。
                2〉基于已有特征的特征:先有某种特征存在,在此基础上进行修饰。例如:圆角、阵列…这是一种依附于已有特征的特征。
               
            3〉定位特征:作为坐标系的参数化控制结果,生成工作面、工作轴、工作点或者基准坐标系。这些要素也是参数化的。MDT为设计数据的管理,提供了设计变量的数据结构和管理功能。同时,在MDT中提供了关于设计参数丰富的数据结构和管理工具,这些是对于传统设计技术的精炼和抽象,是将传统设计技巧用程序模拟并且提供给用户的典型实例。掌握和使用了这类技术,对于设计质量的提高,将起到直接的作用。
               
            1〉设计变量有控制激活零件用的“内部变量”和对于全部零件或特征都起作用的“全局变量”。事实上,这些设计变量在参数化的装配中同样可以使用。可以引用设计变量填充参数化约束尺寸的值,这样,就可能在数个相关零件的约束尺寸中使用相同的几个设计变量,从而建立起这些零件设计尺寸的自动关联。
               
            2〉设计变量可以使用外部数据库的数据,例如:Excel表或者*.PRM文件。这样,设计数据将有可能在更大的范围内、用更多的手段进行控制、管理和计算。可见,从功能上来说,实现全参数化的三维建模,MDT已经具备充要的条件。这些功能实际上是对于传统设计知识的程序化处理,这样的功能是“源于传统设计、高于传统设计”的应用程序包。

                5.正确的辅助设计建模概念

                5.1人是CAD系统中的主要成员
               
            我认为,将计算机+应用软件称为“电脑”是一个概念性错误,因为计算机设计系统至今仍然不能(也许很远的将来也不能)象人一样思考,即使这个人是一个不太成熟的设计师。实际上,一个CAD系统的组成应当包括硬件、软件和使用者,无论设计软件的能力有多强,人的操作才是决定这个软件使用之效果的决定性因素。十分清楚,同一个CAD软件,在不同的人手中,会有相当不同的使用效果。例如:AutoCAD在一些人手中仅仅是电子图板,而在另一些人手中却成为很好的二维设计平台。
                这可能取决于下列条件:
                1〉对自己要做的设计的理解到底有多深?
                2〉在建模之前的设计数据准备是否足够充分?
                3〉对自己的专业设计经验和知识面到底有多宽?
                4〉对自己使用的软件功能到底掌握了多少?
               
            可见,在追求软件应用效果的时候,首先应当检查的是自己的准备是否充足。不能设想,一个设计经验不足的新工程师,会完成一个正确的全参数化驱动三维零件模型。即使是对软件十分了解的应用程序开发商,也可能由于专业设计知识的贫乏,经常在他的程序中露怯,这样的例子甚至相当常见。工程师使用CAD系统,尤其是三维设计系统,原有的技术准备肯定不足,必须修正自己的一些概念,这是技术进步的必然。至少你已经被你的制图老师“洗过脑”,三维原始概念十分淡化;再加上没有时间或者没有机会参加正规的软件使用培训,而软件应用靠自己“悟”,是要走许多弯路的;还可能看了一些参考书,而书的作者无意中给你灌输了一些不正确的应用方法,而你却将这些方法当成权威的观点…总之,完善自己的专业设计知识,参加正规的软件应用培训,是使自己在CAD系统中发挥应有作用的关键因素。
               
            有这样一种观点:按照软件的设计思想使用软件进行自己的设计。这种观点认为CAD应用过程的主要因素是软件而不是使用者。因此使用者需要克服自我,去适应软件。我认为这是不对的,在专业设计问题上,最高权威不是软件,而是设计者。因此在CAD技术的应用过程中,必须“以我为主”。就是按照应用者的设计思路去使用软件的功能。
页: [1]
查看完整版本: re:对CAD技术的看法-陈伯雄(2)