本帖最后由 highflybird 于 2022-7-24 11:09 编辑
为了便于论坛管理和方便阅读,避免重复发帖及浪费论坛资源,此主题为专门讨论一元五次方程及更高次方程问题。
以后关于这方面的话题,如若再开新主题,将一律删除。屡教不改者将被禁言!!!
当然,你也可以在你以前的帖子中继续讨论。
但所有讨论,均须遵守版规,以科学和事实为据,不得以不文明言语攻击和谩骂他人!
一、陈述:
首先,这里所说的五次方程指的是一般的一元五次方程,即形如 的方程 (a≠0,f≠0)它的解可以用有限次各个系数的加减乘除以及开整数次方根来表示。下面是说明:
1、这里说的”一般“指的的是除去一些特定类型的有根式解的--有点废话。系数可以是整数,有理数,还可以为实数(复数不在讨论范围)。
2、解的表达式必须是精确的,也就是无论你计算到多少位,代入原方程,结果就是0。
3、加减乘除以及开整数次方根必须是有限次的,你给我整个无穷级数的表达,或者来个极限值的表达,逗我玩呢!
如果你对此说明有异议或者认为我的表述是错误的,请以现代数学书中表述为准。
二、否定风花飘飘的说法
好,下面的重头戏来了。
本论坛的风花飘飘多次发帖,说他已经找到了求解一元五次方程的根式解的方法,地址我不一一贴上来了,以下面的
解一元五次方程的一个通用方法,但是有条件
【炸人方程】费时十年多解出一个伽罗华方程……
这个给不出根式表达式?实在是笑话。
这三个里面的提到的我来展开讨论:
他声称找到了伽罗华方程 x^5-5*x-2=0的根式解。 但同时,他也觉得不太完美,因为他自己说”小数点后万亿位出现了差别”,可能他自己也觉得某个地方有什么问题,他却视而不见,将之归结为计算精度的问题。然而,这个恰恰是致命地方。他说的“小数点后万亿位”更准确的说法,应该是小数点后11位数字是准确的,然而11位有效数字并不是准确解:
他的这个解不是精确解,而是近似解!!!
他的这个解不是精确解,而是近似解!!!
他的这个解不是精确解,而是近似解!!!
首先,他提出一个根式解,并附上了word表达式,我特意代入了Maple 进行计算,把Maple 精度设置为20位,发现果然不精确。
他的解表达式是:-(-1 + 1/(2*sqrt(30/(-40 + (1295852975 - 15*sqrt(7227689318907585))^(1/3) + (5*(259170595 + 3*sqrt(7227689318907585)))^(1/3)))) - 1/2*sqrt(-8/3 - 1/30*(1295852975 - 15*sqrt(7227689318907585))^(1/3) - (259170595 + 3*sqrt(7227689318907585))^(1/3)/(6*5^(2/3)) + 625*sqrt(30/(-40 + (1295852975 - 15*sqrt(7227689318907585))^(1/3) + (5*(259170595 + 3*sqrt(7227689318907585)))^(1/3)))))^(1/5)
这个表达式确实是有限次的加减乘除和根式的表达,满足前面的描述,
把他的解用软件计算精确到小数点后30位是: -0.402102389928894805200699542948...
而用Maple解方程得到的数值解精确到30位后是:-0.402102389929217472006029101134...
明眼人一眼就看出来了,小数点后12位数字就不同了,哪个是对的呢?
最好代入x^5-5*x-2计算:
代入他的:subs(x = -0.402102389928894805200699542948, x^5 - 5*x - 2) : evalf(%)
得到:-1.57115749033474120*10^(-12) 。
说实在话,结果很精确,几乎为0,但不是0,对于现代计算来说,还没达到双精度的有效位呢。
代入maple计算的:
subs(x = -0.402102389929217472006029101134, x^5 - 5*x - 2)
结果呢,就是0,满足精度要求.
当然你也可以提高Maple 的精度,譬如设置100,甚至小数点后一万位的精度,其实这已经没必要了。
你可能说,Maple计算不准确啊,那好吧,你放到Mathematica、matlab去计算,精度设置到20,或者30,看看会不会得到相同结果。
呵呵,数学界的三大软件你都说不准确,那你飞上天了啊...
我甚至都还做了一下测试,代入到我自己写的LISP程序计算,
把风花飘飘所谓的根式解求值结果:-0.4021023899288871 ,LISP计算的最大精度也就是20位,但是也可以看出Maple计算结果没错。
所以我可以理直气壮地否定风花飘飘:
这个【根式】不是【x^5-5x-2=0】的根!!!这个就是个近似值。
哪怕你以后真的找到了根式解(我相信不能),也不能否定上面的说法。
你能说355/113就是Pi的根式表达么?不能。
哪怕你找到了一个根式表达,能精确计算到Pi到小数点后面一万亿位,也不能说这个就是Pi的根式表达。
因为不存在有限次的根式表达等于Pi.道理都是一样的。
三、其它一元五次方程
另外,我同时也提了一个方程,要他解,他说多少年前别人就提了这个方程,以下是他自己说的:
《科学网》的br0618就是本人,当时解的方程就是x^5-4x+2=0(注:当时解的根式结果是错的。目前可秒杀!)
根据他的说法,这个方程他也应该解了十多年了吧,当时算错了,现在应该对了吧?为何还没有结果?
Show me!
他甚至要说一两个简单的就能说明问题,那好,比这个还简单的来了:
请你求解:x^5-x+1=0
附加几句话,一个特例方程可能仅仅是代表一个特例,一个特定类型的也就是一个特定类型的,不能推广到整个类型。整系数的代表不了有理系数的,有理系数的更代表不了实数系数的。
你要证明对一般方程都有根式解,你必须证明这个一般性。否则你就不要推翻这个定论。
四、共根
他出了一道题目,然后说:
各位看好:把y = 5*x + 2代入他的:y^5 - 10*y^4 + 40*y^3 - 80*y^2 - 3045*y - 32=0再化简就得到:x^5 - 5*x - 2=0;
同样把x = (y - 2)/5代入:x^5 - 5*x - 2=0再化简就得到:y^5 - 10*y^4 + 40*y^3 - 80*y^2 - 3045*y - 32=0。
这个就是简单的加减乘除,这个对解方程有帮助吗?然后他弄了个“共根”,依他的意思,就是这两个方程有共同的解。
这不就是一个对解的线性变换吗?我觉得这个词语实在不专业,反正我没在数学辞典上查找到,也许是我太孤陋寡闻了吧。各位有知道的请告诉我一下,多谢了!
五、四消元法
我仔细看了一下他的四消元法,还是没搞懂,其中有些步骤不明朗,所以这里我不讨论,也许这个方法出自于朱世杰的四元术吧,但朱世杰的四元术能得到一般一元五次方程的根式解?我不信!
六、参考
关于对一般一元五次方程为何没有根式解,读者不妨参考如下的文章:
整理:一元五次方程没有代数解(根式解),有椭圆函数解、数值解
五次方程为什么没有求根公式(1)
无法“解”出的方程——论一般五次方程没有求根公式
为何从一元五次方程开始就没有由有限次加、减、乘、除、开方运算构成的求根公式了?
如何证明五次及以上方程无根式解?
此处我不解读,我没那么高的水平。
七、数值解和精确解
随着人们对方程的认识不断提高,越来越认识到,寻求数值解往往比寻求精确解的重要性要大得多。
因为一些精确解落到实际应用中,也得先把表达式转化为数值;其次,寻求精确解大多数情况下很难很难,有些就是根本不可能;再次,大多数精确解表达式和步骤无比复杂,如果用计算机来计算,往往是求数值解的效率高于精确解的效率。
当然,求精确解无疑会丰富数学理论,但请千万不要以精确解为至上,而轻视数值解,这是不对的。
还是以方程x^5-5*x-2=0为例,我来展示一下用lisp数值求解有多简洁:
- (setq x 0.5);先初始化x
- (repeat 10 (setq x (- x (/ (- (* x x x x x) (* 5 x) 2) (- (* 5 x x x x) 5)))))
就这样,两行代码就得到了这个解得20位精度的近似值:
(rtos x 2 20)
"-0.4021023899292174"
再次印证了风花飘飘的解只是一个近似解,而不是根式解。
实际上用不了10次迭代,只需要用到4到5次就可以了。
八、其它
说实在话,我对风花飘飘并无敌意,也佩服他十多年利用业余时间只为研究一个方程。这样的毅力还是常人难及。
但是科学就是科学,尤其是数学的是一门极为严密的科学,它的基础历经几千年的夯实,极为稳固。
你可以怀疑物理学的定律,可以推翻化学生物实验得到的结果,但对数学来说,数学的定理结论,历经了多少年、多少个数学家的检验!一个普通人的说他可以推翻某个定理,那几乎可以断定他是错的。不服,你可以写论文,发到正规刊物,如果得到数学家的承认,你将收获无上的荣耀。所以,你完全没必要把精力放在把你的成果发在我们的论坛上,耽误你的时间和精力,实在不划算。
另外,我无意做什么赌局,不与风花飘飘赌上人生中比这珍贵得多的东西。如果他以后的的确确找到了,我大大方方承认就是了。
说实在话,当我看到他的帖子的时候,我也曾一度对群论产生了怀疑,但现在我释然了。还有我的数学水平也有限得很,仅仅是高中毕业生的样子,虽然大学学过一点高数,但懂得还是太少,所以本贴里有任何不对之处,请大家指教改正。
还有:风花飘飘,你是不是欠了别人一声道歉?!
再次重申:不要违反本论坛版规,不要重复发帖!!!
|