明经CAD社区

 找回密码
 注册

QQ登录

只需一步,快速开始

搜索
楼主: highflybird

[其它] 一元五次方程及更高次方程讨论此处跟帖!以后不再开新主题,否则一律删除!

[复制链接]
发表于 2022-7-24 12:47:22 | 显示全部楼层

点评

呵呵……都是玩儿,其实,较真就输了……  发表于 2022-7-24 12:50
发表于 2022-7-24 13:05:45 | 显示全部楼层

说起这个,想起陈景润陈总,终其一生研究哥德巴赫猜想,如果他愿意去研究其他的数学分支,可能取得的成就更大,可惜了。
发表于 2022-7-24 13:11:22 | 显示全部楼层
问题:

一个代数解如果通不过数值验算,那它就是错误的。

这是一个说法!

对么?请给出反例!
发表于 2022-7-24 18:55:49 | 显示全部楼层
风花飘飘 发表于 2022-7-24 13:11
问题:

一个代数解如果通不过数值验算,那它就是错误的。

我认为这个说法是对的,如果一个代数解代入原方程不能精确满足的话,那就不是代数解。
代数解应该就是精确解,在无法求得精确解时求在满足科学或工程精度需要的数值解是一种近似方法,有时候也是迫不得已的方法,有时候也是必要的。

点评

圆面积公式:s=π*r^2就是{标准代数表达式},任何精度的“3.14……”哪怕是亿亿亿……位的精度也不能否定π!  发表于 2022-7-24 19:40
回复 支持 0 反对 1

使用道具 举报

发表于 2022-7-24 19:11:02 来自手机 | 显示全部楼层
但数值解就是数值解,如果代入原方程不能精确满足,无论能精确到多少位,那都是近似解,不能跟精确解划等号。

点评

同意!同意!  发表于 2022-7-24 19:30
发表于 2022-7-24 21:17:54 | 显示全部楼层
本帖最后由 风花飘飘 于 2022-7-24 21:28 编辑

寻求数值解往往比寻求精确解的重要性要大得多。
因为一些精确解落到实际应用中,也得先把表达式转化为数值;其次,寻求精确解大多数情况下很难很难,有些就是根本不可能;再次,大多数精确解表达式和步骤无比复杂,如果用计算机来计算,往往是求数值解的效率高于精确解的效率。

这是标准的“应用数学”思维,没毛病!

牛顿求数值就是“凑数”,单一运算还是可以应用的,因为具备“唯一性”。
若出现多级运算,如求解x^5-5x-2=0,则“凑数求解法”就是“伪科学”(与精确代数表达式对比来而言)。
这里面有x的5次方计算,还有x的5倍计算,,,
凑准【所谓的正确“结果”】也是难为电脑,人脑真不行,起码我是不行。

点评

按数界通行:(-a)^(1/5)=-a^(1/5)没有任何问题吧?把符号该一下计算一下即可,您有世界顶级3大牛上天的软件,呵呵……  发表于 2022-7-24 23:30
请回答:你那个错误是不是移项没有变号的错误?  发表于 2022-7-24 23:24
再重复一遍:(-a)^(1/5)=-a^(1/5),这就是教科书的言论。我也是呵呵呵啊……  发表于 2022-7-24 23:16
开三次方你看不懂就算了,我只是跟你讨论移项变号的问题。不要转移话题。  发表于 2022-7-24 23:15
重复一遍:(-a)^(1/3)=-a^(1/3),这就是教科书的言论,咋了?  发表于 2022-7-24 23:14
你自己说的:“正负号都搞错,按教科书观点不影响结果!“ 请问哪本教科书有这样的言论!找出来! 你在这里罔顾事实,编造谎言。  发表于 2022-7-24 23:10
教科书错了?  发表于 2022-7-24 23:05
(-a)^(1/3)=-a^(1/3),这就是教科书的言论,咋了?  发表于 2022-7-24 23:03
哪本教科书说正负号都搞错,按教科书观点不影响结果?找出来!你在这里发表反科学的言论.  发表于 2022-7-24 22:59
正负号都搞错,按教科书观点不影响结果,但我不这样认为,所以承认错误! 您把符号改正计算一下可否?您的数学软件都是顶级牛(世界前三)!  发表于 2022-7-24 22:49
发表于 2022-7-24 22:42:31 | 显示全部楼层
看了全部的楼层,想说一下:
数学书的解析解,那是有严格定义的,要能经得起完整过程推敲,并且解出来的结果代入进去,要严丝合缝。如果不能满足,那就不能叫解析解,不要在名字上碰瓷,没意义,也不会被数学界承认。近似解是近似解,解析解是解析解,各有各的叫法,各有各的用途。

1. 如果是叫解析解,那就要遵循严格的数学推导过程,比如符号从右边移到左边,在严格推理过程中就是要加上负号,如果这一步经不起推敲,那很抱歉,后面你不用看了,这个过程就是错的,这点没啥可争的。

2. 解析解就是解析解,解析解的结果,代入原算式,不管多少位小数,都要保证左右完全相等。

3. 如果达不到2里面在任意位上,左右完全相当,即便数值精度很高(即便10W位),那就也只能叫近似解。

4. 近似解也可以有近似解的计算方法和过程,但是如果结果不满足2,那就不能叫解析解,没必要非得牵强附会说自己就是解析解,还是那句话,碰瓷名字没意义,除非你让数学界改变解析解的定义。

5. 武松打虎出名了,别人就羡慕他的名气,有个人说他也能打虎,并且一次能打100个,他说自己也叫打虎武松,但实际上那他不是武松,真正的打虎的武松只有一个:人们公认定义的那一个,

6. 何必非得说是打虎武松?何必非得是武松打虎?鲁智深打虎如果能打出名头,那一样会家喻户晓,众所周知。

点评

zixuan203344在否定你的观点,你还在给自己脸上贴金。  发表于 2022-7-24 23:13
观点完全正确。也不一定就正确,但是与我同而已,谁的观点是绝对正确的?真理是相对的,数学也一样!  发表于 2022-7-24 22:56
发表于 2022-7-24 23:25:33 | 显示全部楼层
讨论许久了,您到底能不能给出y^5-10*y^4+40*y^3-80*y^2-3045*y-32=0的根式解(5个代数表达式)?

点评

x^5=-2x+1与x^5=2x-1是不是解相同,我应该试一下,是开奇数次方,教课书说符合可以提出来的。所以我一贯坚持的观点是负数开方是虚数,要用地魔佛公式才是正确的。  发表于 2023-3-24 12:46
那请问: x=-2x+1 和x=2x-1 的解相同吗?  发表于 2022-7-24 23:54
我说过没有变号是我错了啊,但是不影响结果啊,  发表于 2022-7-24 23:47
你问的问题,我已经回答了。我问的问题你为何一直不敢回答?  发表于 2022-7-24 23:29
请回答:你那个错误是不是移项没有变号的错误?  发表于 2022-7-24 23:28
 楼主| 发表于 2022-8-1 23:41:29 | 显示全部楼层
然而对某些特定的五次方程,还是有根式解的。只要满足伽罗瓦群的要求,它就可以得到根式解。

下面我贴上三篇论文,是依据数学家WATSON的方法求解某特定类型的一元五次方程。




大家不妨试试解这个方程。

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?注册

x

点评

我试了,目前的数学软件都可以秒了的。步步为营去算的话,估计要2~4年时间吧……呵呵  发表于 2022-12-14 10:43
发表于 2022-8-9 22:36:00 | 显示全部楼层
还有人讨论这个。这不是百度就知道的事吗,下面来自百度。“一元n次方程(equation of degree n with one unknown)是一元n次多项式所确定的方程,指方程a0xn+a1xn-1+…+an=0 (a0≠0),当n≥3时,称为高次方程.研究一元n次方程的根,包括根的存在、根式解、根的界和根的个数等,曾经是代数学的中心问题,一元n次方程的系数和有理常数以及对这些数进行加、减、乘、除和开整数次方的符号组成的式子,称为方程的根式,根式解就是求将代数方程的根用方程系数的根式表达出来,n次方程的根式解,亦称为代数解法,三次方程与四次方程的根式解于16世纪由意大利数学家给出,此后自然地开始寻求五次以及五次以上代数方程的根式解,这种尝试一直继续近三个世纪,经过莱布尼茨(G.W.Leibniz)、范德蒙德(A.-T.Vandermonde)、拉格朗日(J.-L.Lagrange)、鲁菲尼(P.Ruffini,)等人的艰辛努力,直到19世纪才由阿贝尔(N.H.Abel,)解决,他证明了一般的n (n≥5)次方程不能用根式解,不久伽罗瓦(E.Galois,)用群论方法得出了方程可用根式解的充分必要条件 [1]  。”
您需要登录后才可以回帖 登录 | 注册

本版积分规则

小黑屋|手机版|CAD论坛|CAD教程|CAD下载|联系我们|关于明经|明经通道 ( 粤ICP备05003914号 )  
©2000-2023 明经通道 版权所有 本站代码,在未取得本站及作者授权的情况下,不得用于商业用途

GMT+8, 2024-11-22 23:31 , Processed in 0.166303 second(s), 18 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表